Solve for k_1
k_{1}=\frac{253}{595500}\approx 0.000424853
Share
Copied to clipboard
69=49625k_{1}+\frac{575}{12}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of 69 is 69.
49625k_{1}+\frac{575}{12}=69
Swap sides so that all variable terms are on the left hand side.
49625k_{1}=69-\frac{575}{12}
Subtract \frac{575}{12} from both sides.
49625k_{1}=\frac{828}{12}-\frac{575}{12}
Convert 69 to fraction \frac{828}{12}.
49625k_{1}=\frac{828-575}{12}
Since \frac{828}{12} and \frac{575}{12} have the same denominator, subtract them by subtracting their numerators.
49625k_{1}=\frac{253}{12}
Subtract 575 from 828 to get 253.
k_{1}=\frac{\frac{253}{12}}{49625}
Divide both sides by 49625.
k_{1}=\frac{253}{12\times 49625}
Express \frac{\frac{253}{12}}{49625} as a single fraction.
k_{1}=\frac{253}{595500}
Multiply 12 and 49625 to get 595500.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}