Solve for k_1
k_{1} = \frac{3289}{2382} = 1\frac{907}{2382} \approx 1.38077246
Share
Copied to clipboard
69=49.625k_{1}+\frac{5.75}{12}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of 69 is 69.
69=49.625k_{1}+\frac{575}{1200}
Expand \frac{5.75}{12} by multiplying both numerator and the denominator by 100.
69=49.625k_{1}+\frac{23}{48}
Reduce the fraction \frac{575}{1200} to lowest terms by extracting and canceling out 25.
49.625k_{1}+\frac{23}{48}=69
Swap sides so that all variable terms are on the left hand side.
49.625k_{1}=69-\frac{23}{48}
Subtract \frac{23}{48} from both sides.
49.625k_{1}=\frac{3312}{48}-\frac{23}{48}
Convert 69 to fraction \frac{3312}{48}.
49.625k_{1}=\frac{3312-23}{48}
Since \frac{3312}{48} and \frac{23}{48} have the same denominator, subtract them by subtracting their numerators.
49.625k_{1}=\frac{3289}{48}
Subtract 23 from 3312 to get 3289.
k_{1}=\frac{\frac{3289}{48}}{49.625}
Divide both sides by 49.625.
k_{1}=\frac{3289}{48\times 49.625}
Express \frac{\frac{3289}{48}}{49.625} as a single fraction.
k_{1}=\frac{3289}{2382}
Multiply 48 and 49.625 to get 2382.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}