Solve for y
y = \frac{41}{16} = 2\frac{9}{16} = 2.5625
y = \frac{23}{16} = 1\frac{7}{16} = 1.4375
Graph
Share
Copied to clipboard
32\times \frac{|2-y|}{-\frac{2}{5}}=-\left(1\times 32+13\right)
Multiply both sides of the equation by 32.
32\times \frac{|2-y|}{-\frac{2}{5}}=-\left(32+13\right)
Multiply 1 and 32 to get 32.
32\times \frac{|2-y|}{-\frac{2}{5}}=-45
Add 32 and 13 to get 45.
\frac{|2-y|}{-\frac{2}{5}}=-\frac{45}{32}
Divide both sides by 32.
|2-y|=-\frac{45}{32}\left(-\frac{2}{5}\right)
Multiply both sides by -\frac{2}{5}.
|2-y|=\frac{-45\left(-2\right)}{32\times 5}
Multiply -\frac{45}{32} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
|2-y|=\frac{90}{160}
Do the multiplications in the fraction \frac{-45\left(-2\right)}{32\times 5}.
|2-y|=\frac{9}{16}
Reduce the fraction \frac{90}{160} to lowest terms by extracting and canceling out 10.
|-y+2|=\frac{9}{16}
Combine like terms and use the properties of equality to get the variable on one side of the equal sign and the numbers on the other side. Remember to follow the order of operations.
-y+2=\frac{9}{16} -y+2=-\frac{9}{16}
Use the definition of absolute value.
-y=-\frac{23}{16} -y=-\frac{41}{16}
Subtract 2 from both sides of the equation.
y=\frac{23}{16} y=\frac{41}{16}
Divide both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}