Evaluate
\frac{449}{9}\approx 49.888888889
Factor
\frac{449}{3 ^ {2}} = 49\frac{8}{9} = 49.888888888888886
Share
Copied to clipboard
\frac{8}{|-9|}-5\left(-8\right)+3^{2}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -8 is 8.
\frac{8}{9}-5\left(-8\right)+3^{2}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -9 is 9.
\frac{8}{9}-\left(-40\right)+3^{2}
Multiply 5 and -8 to get -40.
\frac{8}{9}+40+3^{2}
The opposite of -40 is 40.
\frac{8}{9}+\frac{360}{9}+3^{2}
Convert 40 to fraction \frac{360}{9}.
\frac{8+360}{9}+3^{2}
Since \frac{8}{9} and \frac{360}{9} have the same denominator, add them by adding their numerators.
\frac{368}{9}+3^{2}
Add 8 and 360 to get 368.
\frac{368}{9}+9
Calculate 3 to the power of 2 and get 9.
\frac{368}{9}+\frac{81}{9}
Convert 9 to fraction \frac{81}{9}.
\frac{368+81}{9}
Since \frac{368}{9} and \frac{81}{9} have the same denominator, add them by adding their numerators.
\frac{449}{9}
Add 368 and 81 to get 449.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}