Evaluate
-4
Factor
-4
Share
Copied to clipboard
\frac{18}{3}+\left(\frac{1}{3}-\frac{5}{6}\right)\times 12-\left(-2\right)^{2}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -18 is 18.
6+\left(\frac{1}{3}-\frac{5}{6}\right)\times 12-\left(-2\right)^{2}
Divide 18 by 3 to get 6.
6+\left(\frac{2}{6}-\frac{5}{6}\right)\times 12-\left(-2\right)^{2}
Least common multiple of 3 and 6 is 6. Convert \frac{1}{3} and \frac{5}{6} to fractions with denominator 6.
6+\frac{2-5}{6}\times 12-\left(-2\right)^{2}
Since \frac{2}{6} and \frac{5}{6} have the same denominator, subtract them by subtracting their numerators.
6+\frac{-3}{6}\times 12-\left(-2\right)^{2}
Subtract 5 from 2 to get -3.
6-\frac{1}{2}\times 12-\left(-2\right)^{2}
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
6+\frac{-12}{2}-\left(-2\right)^{2}
Express -\frac{1}{2}\times 12 as a single fraction.
6-6-\left(-2\right)^{2}
Divide -12 by 2 to get -6.
0-\left(-2\right)^{2}
Subtract 6 from 6 to get 0.
0-4
Calculate -2 to the power of 2 and get 4.
-4
Subtract 4 from 0 to get -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}