Evaluate
\frac{1}{2}=0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
|-\frac{2}{2}-\frac{3}{2}|+36\left(\frac{1}{3}-\frac{1}{2}\right)-\frac{3}{-\frac{3}{4}}
Convert -1 to fraction -\frac{2}{2}.
|\frac{-2-3}{2}|+36\left(\frac{1}{3}-\frac{1}{2}\right)-\frac{3}{-\frac{3}{4}}
Since -\frac{2}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
|-\frac{5}{2}|+36\left(\frac{1}{3}-\frac{1}{2}\right)-\frac{3}{-\frac{3}{4}}
Subtract 3 from -2 to get -5.
\frac{5}{2}+36\left(\frac{1}{3}-\frac{1}{2}\right)-\frac{3}{-\frac{3}{4}}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{5}{2} is \frac{5}{2}.
\frac{5}{2}+36\left(\frac{2}{6}-\frac{3}{6}\right)-\frac{3}{-\frac{3}{4}}
Least common multiple of 3 and 2 is 6. Convert \frac{1}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{5}{2}+36\times \frac{2-3}{6}-\frac{3}{-\frac{3}{4}}
Since \frac{2}{6} and \frac{3}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{2}+36\left(-\frac{1}{6}\right)-\frac{3}{-\frac{3}{4}}
Subtract 3 from 2 to get -1.
\frac{5}{2}+\frac{36\left(-1\right)}{6}-\frac{3}{-\frac{3}{4}}
Express 36\left(-\frac{1}{6}\right) as a single fraction.
\frac{5}{2}+\frac{-36}{6}-\frac{3}{-\frac{3}{4}}
Multiply 36 and -1 to get -36.
\frac{5}{2}-6-\frac{3}{-\frac{3}{4}}
Divide -36 by 6 to get -6.
\frac{5}{2}-\frac{12}{2}-\frac{3}{-\frac{3}{4}}
Convert 6 to fraction \frac{12}{2}.
\frac{5-12}{2}-\frac{3}{-\frac{3}{4}}
Since \frac{5}{2} and \frac{12}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{7}{2}-\frac{3}{-\frac{3}{4}}
Subtract 12 from 5 to get -7.
-\frac{7}{2}-3\left(-\frac{4}{3}\right)
Divide 3 by -\frac{3}{4} by multiplying 3 by the reciprocal of -\frac{3}{4}.
-\frac{7}{2}-\left(-4\right)
Cancel out 3 and 3.
-\frac{7}{2}+4
The opposite of -4 is 4.
-\frac{7}{2}+\frac{8}{2}
Convert 4 to fraction \frac{8}{2}.
\frac{-7+8}{2}
Since -\frac{7}{2} and \frac{8}{2} have the same denominator, add them by adding their numerators.
\frac{1}{2}
Add -7 and 8 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}