Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{98}{5}x\left(-\frac{32}{3}\right)
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{98}{5} is \frac{98}{5}.
\frac{98\left(-32\right)}{5\times 3}x
Multiply \frac{98}{5} times -\frac{32}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-3136}{15}x
Do the multiplications in the fraction \frac{98\left(-32\right)}{5\times 3}.
-\frac{3136}{15}x
Fraction \frac{-3136}{15} can be rewritten as -\frac{3136}{15} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{98}{5}x\left(-\frac{32}{3}\right))
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{98}{5} is \frac{98}{5}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{98\left(-32\right)}{5\times 3}x)
Multiply \frac{98}{5} times -\frac{32}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3136}{15}x)
Do the multiplications in the fraction \frac{98\left(-32\right)}{5\times 3}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{3136}{15}x)
Fraction \frac{-3136}{15} can be rewritten as -\frac{3136}{15} by extracting the negative sign.
-\frac{3136}{15}x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{3136}{15}x^{0}
Subtract 1 from 1.
-\frac{3136}{15}
For any term t except 0, t^{0}=1.