Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2}+\left(-1\right)^{2019}+2^{-1}-\left(2-\sqrt{2}\right)^{0}+2\cos(45)
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{1}{2} is \frac{1}{2}.
\frac{1}{2}-1+2^{-1}-\left(2-\sqrt{2}\right)^{0}+2\cos(45)
Calculate -1 to the power of 2019 and get -1.
-\frac{1}{2}+2^{-1}-\left(2-\sqrt{2}\right)^{0}+2\cos(45)
Subtract 1 from \frac{1}{2} to get -\frac{1}{2}.
-\frac{1}{2}+\frac{1}{2}-\left(2-\sqrt{2}\right)^{0}+2\cos(45)
Calculate 2 to the power of -1 and get \frac{1}{2}.
0-\left(2-\sqrt{2}\right)^{0}+2\cos(45)
Add -\frac{1}{2} and \frac{1}{2} to get 0.
0-1+2\cos(45)
Calculate 2-\sqrt{2} to the power of 0 and get 1.
-1+2\cos(45)
Subtract 1 from 0 to get -1.
-1+2\times \frac{\sqrt{2}}{2}
Get the value of \cos(45) from trigonometric values table.
-1+\sqrt{2}
Cancel out 2 and 2.