| ( - \frac { 15 } { 24 } ) + [ ( - 2 \frac { 3 } { 4 } ) + ( 2 \frac { 1 } { 14 } ) ] =
Evaluate
\frac{73}{56}\approx 1.303571429
Factor
\frac{73}{2 ^ {3} \cdot 7} = 1\frac{17}{56} = 1.3035714285714286
Share
Copied to clipboard
|-\frac{5}{8}-\frac{2\times 4+3}{4}+\frac{2\times 14+1}{14}|
Reduce the fraction \frac{15}{24} to lowest terms by extracting and canceling out 3.
|-\frac{5}{8}-\frac{8+3}{4}+\frac{2\times 14+1}{14}|
Multiply 2 and 4 to get 8.
|-\frac{5}{8}-\frac{11}{4}+\frac{2\times 14+1}{14}|
Add 8 and 3 to get 11.
|-\frac{5}{8}-\frac{22}{8}+\frac{2\times 14+1}{14}|
Least common multiple of 8 and 4 is 8. Convert -\frac{5}{8} and \frac{11}{4} to fractions with denominator 8.
|\frac{-5-22}{8}+\frac{2\times 14+1}{14}|
Since -\frac{5}{8} and \frac{22}{8} have the same denominator, subtract them by subtracting their numerators.
|-\frac{27}{8}+\frac{2\times 14+1}{14}|
Subtract 22 from -5 to get -27.
|-\frac{27}{8}+\frac{28+1}{14}|
Multiply 2 and 14 to get 28.
|-\frac{27}{8}+\frac{29}{14}|
Add 28 and 1 to get 29.
|-\frac{189}{56}+\frac{116}{56}|
Least common multiple of 8 and 14 is 56. Convert -\frac{27}{8} and \frac{29}{14} to fractions with denominator 56.
|\frac{-189+116}{56}|
Since -\frac{189}{56} and \frac{116}{56} have the same denominator, add them by adding their numerators.
|-\frac{73}{56}|
Add -189 and 116 to get -73.
\frac{73}{56}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{73}{56} is \frac{73}{56}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}