| | \frac { 5 } { 6 } - \frac { 9 } { 1 } | - | - | |3 =
Evaluate
\frac{31}{6}\approx 5.166666667
Factor
\frac{31}{2 \cdot 3} = 5\frac{1}{6} = 5.166666666666667
Share
Copied to clipboard
||\frac{5}{6}-9|-|-||3||||
Anything divided by one gives itself.
||\frac{5}{6}-\frac{54}{6}|-|-||3||||
Convert 9 to fraction \frac{54}{6}.
||\frac{5-54}{6}|-|-||3||||
Since \frac{5}{6} and \frac{54}{6} have the same denominator, subtract them by subtracting their numerators.
||-\frac{49}{6}|-|-||3||||
Subtract 54 from 5 to get -49.
|\frac{49}{6}-|-||3||||
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{49}{6} is \frac{49}{6}.
|\frac{49}{6}-|-|3|||
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of 3 is 3.
|\frac{49}{6}-|-3||
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of 3 is 3.
|\frac{49}{6}-3|
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -3 is 3.
|\frac{49}{6}-\frac{18}{6}|
Convert 3 to fraction \frac{18}{6}.
|\frac{49-18}{6}|
Since \frac{49}{6} and \frac{18}{6} have the same denominator, subtract them by subtracting their numerators.
|\frac{31}{6}|
Subtract 18 from 49 to get 31.
\frac{31}{6}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of \frac{31}{6} is \frac{31}{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}