Solve for z_1
z_{1}\in \mathrm{R}
z_{2}\neq 0
Solve for z_2
z_{2}\neq 0
Share
Copied to clipboard
|\frac{1}{z_{2}}z_{1}|=\frac{1}{|z_{2}|}|z_{1}|
Combine like terms and use the properties of equality to get the variable on one side of the equal sign and the numbers on the other side. Remember to follow the order of operations.
|\frac{1}{z_{2}}z_{1}|-\frac{1}{|z_{2}|}|z_{1}|=0
Subtract \frac{1}{|z_{2}|}|z_{1}| from both sides of the equation.
|\frac{1}{z_{2}}||z_{1}|+\left(-\frac{1}{|z_{2}|}\right)|1||z_{1}|=0
The absolute value of a product is the product of the absolute values.
\frac{1-1}{|z_{2}|}|z_{1}|=0
Factor out |z_{1}|.
\text{true}
Add \frac{1}{|z_{2}|} to -\frac{1}{|z_{2}|}.
|z_{1}|=\text{Indeterminate}
Divide both sides by 0.
z_{1}=\text{Indeterminate} z_{1}=\text{Indeterminate}
Use the definition of absolute value.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}