| \frac { 7 } { 20 } + \frac { 1 } { 12 }
Evaluate
\frac{13}{30}\approx 0.433333333
Factor
\frac{13}{2 \cdot 3 \cdot 5} = 0.43333333333333335
Share
Copied to clipboard
|\frac{21}{60}+\frac{5}{60}|
Least common multiple of 20 and 12 is 60. Convert \frac{7}{20} and \frac{1}{12} to fractions with denominator 60.
|\frac{21+5}{60}|
Since \frac{21}{60} and \frac{5}{60} have the same denominator, add them by adding their numerators.
|\frac{26}{60}|
Add 21 and 5 to get 26.
|\frac{13}{30}|
Reduce the fraction \frac{26}{60} to lowest terms by extracting and canceling out 2.
\frac{13}{30}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of \frac{13}{30} is \frac{13}{30}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}