Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

|\frac{\left(5-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}|
Multiply both numerator and denominator of \frac{5-i}{1+i} by the complex conjugate of the denominator, 1-i.
|\frac{\left(5-i\right)\left(1-i\right)}{1^{2}-i^{2}}|
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
|\frac{\left(5-i\right)\left(1-i\right)}{2}|
By definition, i^{2} is -1. Calculate the denominator.
|\frac{5\times 1+5\left(-i\right)-i-\left(-i^{2}\right)}{2}|
Multiply complex numbers 5-i and 1-i like you multiply binomials.
|\frac{5\times 1+5\left(-i\right)-i-\left(-\left(-1\right)\right)}{2}|
By definition, i^{2} is -1.
|\frac{5-5i-i-1}{2}|
Do the multiplications in 5\times 1+5\left(-i\right)-i-\left(-\left(-1\right)\right).
|\frac{5-1+\left(-5-1\right)i}{2}|
Combine the real and imaginary parts in 5-5i-i-1.
|\frac{4-6i}{2}|
Do the additions in 5-1+\left(-5-1\right)i.
|2-3i|
Divide 4-6i by 2 to get 2-3i.
\sqrt{13}
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of 2-3i is \sqrt{13}.