Evaluate
\sqrt{13}\approx 3.605551275
Real Part
\sqrt{13} = 3.605551275
Share
Copied to clipboard
|\frac{\left(5-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}|
Multiply both numerator and denominator of \frac{5-i}{1+i} by the complex conjugate of the denominator, 1-i.
|\frac{\left(5-i\right)\left(1-i\right)}{1^{2}-i^{2}}|
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
|\frac{\left(5-i\right)\left(1-i\right)}{2}|
By definition, i^{2} is -1. Calculate the denominator.
|\frac{5\times 1+5\left(-i\right)-i-\left(-i^{2}\right)}{2}|
Multiply complex numbers 5-i and 1-i like you multiply binomials.
|\frac{5\times 1+5\left(-i\right)-i-\left(-\left(-1\right)\right)}{2}|
By definition, i^{2} is -1.
|\frac{5-5i-i-1}{2}|
Do the multiplications in 5\times 1+5\left(-i\right)-i-\left(-\left(-1\right)\right).
|\frac{5-1+\left(-5-1\right)i}{2}|
Combine the real and imaginary parts in 5-5i-i-1.
|\frac{4-6i}{2}|
Do the additions in 5-1+\left(-5-1\right)i.
|2-3i|
Divide 4-6i by 2 to get 2-3i.
\sqrt{13}
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of 2-3i is \sqrt{13}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}