Evaluate
-\frac{122}{15}\approx -8.133333333
Factor
-\frac{122}{15} = -8\frac{2}{15} = -8.133333333333333
Share
Copied to clipboard
|\frac{4}{5}+\frac{\frac{2\left(-12\right)}{3}}{-6}-\left(-3\right)^{2}|+|24+\left(-3\right)^{3}|\left(-5\right)
Express \frac{2}{3}\left(-12\right) as a single fraction.
|\frac{4}{5}+\frac{\frac{-24}{3}}{-6}-\left(-3\right)^{2}|+|24+\left(-3\right)^{3}|\left(-5\right)
Multiply 2 and -12 to get -24.
|\frac{4}{5}+\frac{-8}{-6}-\left(-3\right)^{2}|+|24+\left(-3\right)^{3}|\left(-5\right)
Divide -24 by 3 to get -8.
|\frac{4}{5}+\frac{4}{3}-\left(-3\right)^{2}|+|24+\left(-3\right)^{3}|\left(-5\right)
Reduce the fraction \frac{-8}{-6} to lowest terms by extracting and canceling out -2.
|\frac{12}{15}+\frac{20}{15}-\left(-3\right)^{2}|+|24+\left(-3\right)^{3}|\left(-5\right)
Least common multiple of 5 and 3 is 15. Convert \frac{4}{5} and \frac{4}{3} to fractions with denominator 15.
|\frac{12+20}{15}-\left(-3\right)^{2}|+|24+\left(-3\right)^{3}|\left(-5\right)
Since \frac{12}{15} and \frac{20}{15} have the same denominator, add them by adding their numerators.
|\frac{32}{15}-\left(-3\right)^{2}|+|24+\left(-3\right)^{3}|\left(-5\right)
Add 12 and 20 to get 32.
|\frac{32}{15}-9|+|24+\left(-3\right)^{3}|\left(-5\right)
Calculate -3 to the power of 2 and get 9.
|\frac{32}{15}-\frac{135}{15}|+|24+\left(-3\right)^{3}|\left(-5\right)
Convert 9 to fraction \frac{135}{15}.
|\frac{32-135}{15}|+|24+\left(-3\right)^{3}|\left(-5\right)
Since \frac{32}{15} and \frac{135}{15} have the same denominator, subtract them by subtracting their numerators.
|-\frac{103}{15}|+|24+\left(-3\right)^{3}|\left(-5\right)
Subtract 135 from 32 to get -103.
\frac{103}{15}+|24+\left(-3\right)^{3}|\left(-5\right)
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{103}{15} is \frac{103}{15}.
\frac{103}{15}+|24-27|\left(-5\right)
Calculate -3 to the power of 3 and get -27.
\frac{103}{15}+|-3|\left(-5\right)
Subtract 27 from 24 to get -3.
\frac{103}{15}+3\left(-5\right)
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -3 is 3.
\frac{103}{15}-15
Multiply 3 and -5 to get -15.
\frac{103}{15}-\frac{225}{15}
Convert 15 to fraction \frac{225}{15}.
\frac{103-225}{15}
Since \frac{103}{15} and \frac{225}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{122}{15}
Subtract 225 from 103 to get -122.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}