Evaluate
\frac{11}{10}=1.1
Factor
\frac{11}{2 \cdot 5} = 1\frac{1}{10} = 1.1
Share
Copied to clipboard
|\frac{4}{3}-\left(\frac{9}{24}-\frac{4}{24}\right)|-|\frac{2}{5}-\left(\frac{7}{8}-\frac{3}{6}\right)|
Least common multiple of 8 and 6 is 24. Convert \frac{3}{8} and \frac{1}{6} to fractions with denominator 24.
|\frac{4}{3}-\frac{9-4}{24}|-|\frac{2}{5}-\left(\frac{7}{8}-\frac{3}{6}\right)|
Since \frac{9}{24} and \frac{4}{24} have the same denominator, subtract them by subtracting their numerators.
|\frac{4}{3}-\frac{5}{24}|-|\frac{2}{5}-\left(\frac{7}{8}-\frac{3}{6}\right)|
Subtract 4 from 9 to get 5.
|\frac{32}{24}-\frac{5}{24}|-|\frac{2}{5}-\left(\frac{7}{8}-\frac{3}{6}\right)|
Least common multiple of 3 and 24 is 24. Convert \frac{4}{3} and \frac{5}{24} to fractions with denominator 24.
|\frac{32-5}{24}|-|\frac{2}{5}-\left(\frac{7}{8}-\frac{3}{6}\right)|
Since \frac{32}{24} and \frac{5}{24} have the same denominator, subtract them by subtracting their numerators.
|\frac{27}{24}|-|\frac{2}{5}-\left(\frac{7}{8}-\frac{3}{6}\right)|
Subtract 5 from 32 to get 27.
|\frac{9}{8}|-|\frac{2}{5}-\left(\frac{7}{8}-\frac{3}{6}\right)|
Reduce the fraction \frac{27}{24} to lowest terms by extracting and canceling out 3.
\frac{9}{8}-|\frac{2}{5}-\left(\frac{7}{8}-\frac{3}{6}\right)|
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of \frac{9}{8} is \frac{9}{8}.
\frac{9}{8}-|\frac{2}{5}-\left(\frac{7}{8}-\frac{1}{2}\right)|
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{9}{8}-|\frac{2}{5}-\left(\frac{7}{8}-\frac{4}{8}\right)|
Least common multiple of 8 and 2 is 8. Convert \frac{7}{8} and \frac{1}{2} to fractions with denominator 8.
\frac{9}{8}-|\frac{2}{5}-\frac{7-4}{8}|
Since \frac{7}{8} and \frac{4}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{8}-|\frac{2}{5}-\frac{3}{8}|
Subtract 4 from 7 to get 3.
\frac{9}{8}-|\frac{16}{40}-\frac{15}{40}|
Least common multiple of 5 and 8 is 40. Convert \frac{2}{5} and \frac{3}{8} to fractions with denominator 40.
\frac{9}{8}-|\frac{16-15}{40}|
Since \frac{16}{40} and \frac{15}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{8}-|\frac{1}{40}|
Subtract 15 from 16 to get 1.
\frac{9}{8}-\frac{1}{40}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of \frac{1}{40} is \frac{1}{40}.
\frac{45}{40}-\frac{1}{40}
Least common multiple of 8 and 40 is 40. Convert \frac{9}{8} and \frac{1}{40} to fractions with denominator 40.
\frac{45-1}{40}
Since \frac{45}{40} and \frac{1}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{44}{40}
Subtract 1 from 45 to get 44.
\frac{11}{10}
Reduce the fraction \frac{44}{40} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}