| \frac { 3 ^ { 4 } } { 4 } - 2 ( 3 ) ^ { 3 } + 11 ( 3 ) ^ { 2 }
Evaluate
\frac{261}{4}=65.25
Factor
\frac{3 ^ {2} \cdot 29}{2 ^ {2}} = 65\frac{1}{4} = 65.25
Share
Copied to clipboard
|\frac{81}{4}-2\times 3^{3}+11\times 3^{2}|
Calculate 3 to the power of 4 and get 81.
|\frac{81}{4}-2\times 27+11\times 3^{2}|
Calculate 3 to the power of 3 and get 27.
|\frac{81}{4}-54+11\times 3^{2}|
Multiply 2 and 27 to get 54.
|\frac{81}{4}-\frac{216}{4}+11\times 3^{2}|
Convert 54 to fraction \frac{216}{4}.
|\frac{81-216}{4}+11\times 3^{2}|
Since \frac{81}{4} and \frac{216}{4} have the same denominator, subtract them by subtracting their numerators.
|-\frac{135}{4}+11\times 3^{2}|
Subtract 216 from 81 to get -135.
|-\frac{135}{4}+11\times 9|
Calculate 3 to the power of 2 and get 9.
|-\frac{135}{4}+99|
Multiply 11 and 9 to get 99.
|-\frac{135}{4}+\frac{396}{4}|
Convert 99 to fraction \frac{396}{4}.
|\frac{-135+396}{4}|
Since -\frac{135}{4} and \frac{396}{4} have the same denominator, add them by adding their numerators.
|\frac{261}{4}|
Add -135 and 396 to get 261.
\frac{261}{4}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of \frac{261}{4} is \frac{261}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}