Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

|\frac{2\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}|
Multiply both numerator and denominator of \frac{2}{1+i} by the complex conjugate of the denominator, 1-i.
|\frac{2\left(1-i\right)}{1^{2}-i^{2}}|
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
|\frac{2\left(1-i\right)}{2}|
By definition, i^{2} is -1. Calculate the denominator.
|\frac{2\times 1+2\left(-i\right)}{2}|
Multiply 2 times 1-i.
|\frac{2-2i}{2}|
Do the multiplications in 2\times 1+2\left(-i\right).
|1-i|
Divide 2-2i by 2 to get 1-i.
\sqrt{2}
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of 1-i is \sqrt{2}.