Evaluate
\frac{30887}{8580}\approx 3.59988345
Factor
\frac{67 \cdot 461}{2 ^ {2} \cdot 3 \cdot 5 \cdot 11 \cdot 13} = 3\frac{5147}{8580} = 3.5998834498834498
Share
Copied to clipboard
|\frac{169}{52}-\frac{8}{52}|\times \frac{9}{11}+\frac{16}{15}
Least common multiple of 4 and 13 is 52. Convert \frac{13}{4} and \frac{2}{13} to fractions with denominator 52.
|\frac{169-8}{52}|\times \frac{9}{11}+\frac{16}{15}
Since \frac{169}{52} and \frac{8}{52} have the same denominator, subtract them by subtracting their numerators.
|\frac{161}{52}|\times \frac{9}{11}+\frac{16}{15}
Subtract 8 from 169 to get 161.
\frac{161}{52}\times \frac{9}{11}+\frac{16}{15}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of \frac{161}{52} is \frac{161}{52}.
\frac{161\times 9}{52\times 11}+\frac{16}{15}
Multiply \frac{161}{52} times \frac{9}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{1449}{572}+\frac{16}{15}
Do the multiplications in the fraction \frac{161\times 9}{52\times 11}.
\frac{21735}{8580}+\frac{9152}{8580}
Least common multiple of 572 and 15 is 8580. Convert \frac{1449}{572} and \frac{16}{15} to fractions with denominator 8580.
\frac{21735+9152}{8580}
Since \frac{21735}{8580} and \frac{9152}{8580} have the same denominator, add them by adding their numerators.
\frac{30887}{8580}
Add 21735 and 9152 to get 30887.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}