Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

|\frac{\frac{11}{15}\times 13}{\left(-\frac{2\times 5+3}{5}\right)\times 9}|
Divide \frac{\frac{11}{15}}{-\frac{2\times 5+3}{5}} by \frac{9}{13} by multiplying \frac{\frac{11}{15}}{-\frac{2\times 5+3}{5}} by the reciprocal of \frac{9}{13}.
|\frac{\frac{11\times 13}{15}}{\left(-\frac{2\times 5+3}{5}\right)\times 9}|
Express \frac{11}{15}\times 13 as a single fraction.
|\frac{\frac{143}{15}}{\left(-\frac{2\times 5+3}{5}\right)\times 9}|
Multiply 11 and 13 to get 143.
|\frac{\frac{143}{15}}{\left(-\frac{10+3}{5}\right)\times 9}|
Multiply 2 and 5 to get 10.
|\frac{\frac{143}{15}}{-\frac{13}{5}\times 9}|
Add 10 and 3 to get 13.
|\frac{\frac{143}{15}}{\frac{-13\times 9}{5}}|
Express -\frac{13}{5}\times 9 as a single fraction.
|\frac{\frac{143}{15}}{\frac{-117}{5}}|
Multiply -13 and 9 to get -117.
|\frac{\frac{143}{15}}{-\frac{117}{5}}|
Fraction \frac{-117}{5} can be rewritten as -\frac{117}{5} by extracting the negative sign.
|\frac{143}{15}\left(-\frac{5}{117}\right)|
Divide \frac{143}{15} by -\frac{117}{5} by multiplying \frac{143}{15} by the reciprocal of -\frac{117}{5}.
|\frac{143\left(-5\right)}{15\times 117}|
Multiply \frac{143}{15} times -\frac{5}{117} by multiplying numerator times numerator and denominator times denominator.
|\frac{-715}{1755}|
Do the multiplications in the fraction \frac{143\left(-5\right)}{15\times 117}.
|-\frac{11}{27}|
Reduce the fraction \frac{-715}{1755} to lowest terms by extracting and canceling out 65.
\frac{11}{27}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{11}{27} is \frac{11}{27}.