Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

|\frac{\frac{11}{15\left(-2\right)}\times \frac{3}{5}}{\frac{9}{13}}|
Express \frac{\frac{11}{15}}{-2} as a single fraction.
|\frac{\frac{11}{-30}\times \frac{3}{5}}{\frac{9}{13}}|
Multiply 15 and -2 to get -30.
|\frac{-\frac{11}{30}\times \frac{3}{5}}{\frac{9}{13}}|
Fraction \frac{11}{-30} can be rewritten as -\frac{11}{30} by extracting the negative sign.
|\frac{\frac{-11\times 3}{30\times 5}}{\frac{9}{13}}|
Multiply -\frac{11}{30} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
|\frac{\frac{-33}{150}}{\frac{9}{13}}|
Do the multiplications in the fraction \frac{-11\times 3}{30\times 5}.
|\frac{-\frac{11}{50}}{\frac{9}{13}}|
Reduce the fraction \frac{-33}{150} to lowest terms by extracting and canceling out 3.
|-\frac{11}{50}\times \frac{13}{9}|
Divide -\frac{11}{50} by \frac{9}{13} by multiplying -\frac{11}{50} by the reciprocal of \frac{9}{13}.
|\frac{-11\times 13}{50\times 9}|
Multiply -\frac{11}{50} times \frac{13}{9} by multiplying numerator times numerator and denominator times denominator.
|\frac{-143}{450}|
Do the multiplications in the fraction \frac{-11\times 13}{50\times 9}.
|-\frac{143}{450}|
Fraction \frac{-143}{450} can be rewritten as -\frac{143}{450} by extracting the negative sign.
\frac{143}{450}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{143}{450} is \frac{143}{450}.