| \frac { 1 } { 4 } - \frac { 2 } { 4 } + \frac { 6 } { 4 } + | \frac { 3 - 1 } { 5 } - \frac { 11 } { 5 }
Evaluate
\frac{61}{20}=3.05
Factor
\frac{61}{2 ^ {2} \cdot 5} = 3\frac{1}{20} = 3.05
Share
Copied to clipboard
|\frac{1-2}{4}+\frac{6}{4}+|\frac{3-1}{5}-\frac{11}{5}||
Since \frac{1}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
|-\frac{1}{4}+\frac{6}{4}+|\frac{3-1}{5}-\frac{11}{5}||
Subtract 2 from 1 to get -1.
|\frac{-1+6}{4}+|\frac{3-1}{5}-\frac{11}{5}||
Since -\frac{1}{4} and \frac{6}{4} have the same denominator, add them by adding their numerators.
|\frac{5}{4}+|\frac{3-1}{5}-\frac{11}{5}||
Add -1 and 6 to get 5.
|\frac{5}{4}+|\frac{2}{5}-\frac{11}{5}||
Subtract 1 from 3 to get 2.
|\frac{5}{4}+|\frac{2-11}{5}||
Since \frac{2}{5} and \frac{11}{5} have the same denominator, subtract them by subtracting their numerators.
|\frac{5}{4}+|-\frac{9}{5}||
Subtract 11 from 2 to get -9.
|\frac{5}{4}+\frac{9}{5}|
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{9}{5} is \frac{9}{5}.
|\frac{25}{20}+\frac{36}{20}|
Least common multiple of 4 and 5 is 20. Convert \frac{5}{4} and \frac{9}{5} to fractions with denominator 20.
|\frac{25+36}{20}|
Since \frac{25}{20} and \frac{36}{20} have the same denominator, add them by adding their numerators.
|\frac{61}{20}|
Add 25 and 36 to get 61.
\frac{61}{20}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of \frac{61}{20} is \frac{61}{20}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}