| \frac { 1 } { 12 } - \frac { 1 } { 11 } | + | \frac { 1 } { 13 } - \frac { 1 } { 12 } | + | \frac { 1 } { 14 } - \frac { 1 } { 13 }
Evaluate
\frac{3}{154}\approx 0.019480519
Factor
\frac{3}{2 \cdot 7 \cdot 11} = 0.01948051948051948
Share
Copied to clipboard
|\frac{11}{132}-\frac{12}{132}|+|\frac{1}{13}-\frac{1}{12}|+|\frac{1}{14}-\frac{1}{13}|
Least common multiple of 12 and 11 is 132. Convert \frac{1}{12} and \frac{1}{11} to fractions with denominator 132.
|\frac{11-12}{132}|+|\frac{1}{13}-\frac{1}{12}|+|\frac{1}{14}-\frac{1}{13}|
Since \frac{11}{132} and \frac{12}{132} have the same denominator, subtract them by subtracting their numerators.
|-\frac{1}{132}|+|\frac{1}{13}-\frac{1}{12}|+|\frac{1}{14}-\frac{1}{13}|
Subtract 12 from 11 to get -1.
\frac{1}{132}+|\frac{1}{13}-\frac{1}{12}|+|\frac{1}{14}-\frac{1}{13}|
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{1}{132} is \frac{1}{132}.
\frac{1}{132}+|\frac{12}{156}-\frac{13}{156}|+|\frac{1}{14}-\frac{1}{13}|
Least common multiple of 13 and 12 is 156. Convert \frac{1}{13} and \frac{1}{12} to fractions with denominator 156.
\frac{1}{132}+|\frac{12-13}{156}|+|\frac{1}{14}-\frac{1}{13}|
Since \frac{12}{156} and \frac{13}{156} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{132}+|-\frac{1}{156}|+|\frac{1}{14}-\frac{1}{13}|
Subtract 13 from 12 to get -1.
\frac{1}{132}+\frac{1}{156}+|\frac{1}{14}-\frac{1}{13}|
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{1}{156} is \frac{1}{156}.
\frac{13}{1716}+\frac{11}{1716}+|\frac{1}{14}-\frac{1}{13}|
Least common multiple of 132 and 156 is 1716. Convert \frac{1}{132} and \frac{1}{156} to fractions with denominator 1716.
\frac{13+11}{1716}+|\frac{1}{14}-\frac{1}{13}|
Since \frac{13}{1716} and \frac{11}{1716} have the same denominator, add them by adding their numerators.
\frac{24}{1716}+|\frac{1}{14}-\frac{1}{13}|
Add 13 and 11 to get 24.
\frac{2}{143}+|\frac{1}{14}-\frac{1}{13}|
Reduce the fraction \frac{24}{1716} to lowest terms by extracting and canceling out 12.
\frac{2}{143}+|\frac{13}{182}-\frac{14}{182}|
Least common multiple of 14 and 13 is 182. Convert \frac{1}{14} and \frac{1}{13} to fractions with denominator 182.
\frac{2}{143}+|\frac{13-14}{182}|
Since \frac{13}{182} and \frac{14}{182} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{143}+|-\frac{1}{182}|
Subtract 14 from 13 to get -1.
\frac{2}{143}+\frac{1}{182}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{1}{182} is \frac{1}{182}.
\frac{28}{2002}+\frac{11}{2002}
Least common multiple of 143 and 182 is 2002. Convert \frac{2}{143} and \frac{1}{182} to fractions with denominator 2002.
\frac{28+11}{2002}
Since \frac{28}{2002} and \frac{11}{2002} have the same denominator, add them by adding their numerators.
\frac{39}{2002}
Add 28 and 11 to get 39.
\frac{3}{154}
Reduce the fraction \frac{39}{2002} to lowest terms by extracting and canceling out 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}