Evaluate
\frac{\sqrt{10}}{5}\approx 0.632455532
Real Part
\frac{\sqrt{10}}{5} = 0.6324555320336759
Share
Copied to clipboard
|\frac{\left(1+3i\right)\left(-4+3i\right)}{\left(-4-3i\right)\left(-4+3i\right)}|
Multiply both numerator and denominator of \frac{1+3i}{-4-3i} by the complex conjugate of the denominator, -4+3i.
|\frac{\left(1+3i\right)\left(-4+3i\right)}{\left(-4\right)^{2}-3^{2}i^{2}}|
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
|\frac{\left(1+3i\right)\left(-4+3i\right)}{25}|
By definition, i^{2} is -1. Calculate the denominator.
|\frac{1\left(-4\right)+1\times \left(3i\right)+3i\left(-4\right)+3\times 3i^{2}}{25}|
Multiply complex numbers 1+3i and -4+3i like you multiply binomials.
|\frac{1\left(-4\right)+1\times \left(3i\right)+3i\left(-4\right)+3\times 3\left(-1\right)}{25}|
By definition, i^{2} is -1.
|\frac{-4+3i-12i-9}{25}|
Do the multiplications in 1\left(-4\right)+1\times \left(3i\right)+3i\left(-4\right)+3\times 3\left(-1\right).
|\frac{-4-9+\left(3-12\right)i}{25}|
Combine the real and imaginary parts in -4+3i-12i-9.
|\frac{-13-9i}{25}|
Do the additions in -4-9+\left(3-12\right)i.
|-\frac{13}{25}-\frac{9}{25}i|
Divide -13-9i by 25 to get -\frac{13}{25}-\frac{9}{25}i.
\sqrt{\frac{2}{5}}
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of -\frac{13}{25}-\frac{9}{25}i is \sqrt{\frac{2}{5}}.
\frac{\sqrt{2}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{2}{5}} as the division of square roots \frac{\sqrt{2}}{\sqrt{5}}.
\frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{2}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{\sqrt{10}}{5}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}