Evaluate
\frac{6}{5}=1.2
Factor
\frac{2 \cdot 3}{5} = 1\frac{1}{5} = 1.2
Share
Copied to clipboard
|\frac{\frac{3\times 2}{4}-3+0}{\sqrt{\left(\frac{3}{4}\right)^{2}+\left(-1\right)^{2}}}|
Express \frac{3}{4}\times 2 as a single fraction.
|\frac{\frac{6}{4}-3+0}{\sqrt{\left(\frac{3}{4}\right)^{2}+\left(-1\right)^{2}}}|
Multiply 3 and 2 to get 6.
|\frac{\frac{3}{2}-3+0}{\sqrt{\left(\frac{3}{4}\right)^{2}+\left(-1\right)^{2}}}|
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
|\frac{\frac{3}{2}-\frac{6}{2}+0}{\sqrt{\left(\frac{3}{4}\right)^{2}+\left(-1\right)^{2}}}|
Convert 3 to fraction \frac{6}{2}.
|\frac{\frac{3-6}{2}+0}{\sqrt{\left(\frac{3}{4}\right)^{2}+\left(-1\right)^{2}}}|
Since \frac{3}{2} and \frac{6}{2} have the same denominator, subtract them by subtracting their numerators.
|\frac{-\frac{3}{2}+0}{\sqrt{\left(\frac{3}{4}\right)^{2}+\left(-1\right)^{2}}}|
Subtract 6 from 3 to get -3.
|\frac{-\frac{3}{2}}{\sqrt{\left(\frac{3}{4}\right)^{2}+\left(-1\right)^{2}}}|
Add -\frac{3}{2} and 0 to get -\frac{3}{2}.
|\frac{-\frac{3}{2}}{\sqrt{\frac{9}{16}+\left(-1\right)^{2}}}|
Calculate \frac{3}{4} to the power of 2 and get \frac{9}{16}.
|\frac{-\frac{3}{2}}{\sqrt{\frac{9}{16}+1}}|
Calculate -1 to the power of 2 and get 1.
|\frac{-\frac{3}{2}}{\sqrt{\frac{9}{16}+\frac{16}{16}}}|
Convert 1 to fraction \frac{16}{16}.
|\frac{-\frac{3}{2}}{\sqrt{\frac{9+16}{16}}}|
Since \frac{9}{16} and \frac{16}{16} have the same denominator, add them by adding their numerators.
|\frac{-\frac{3}{2}}{\sqrt{\frac{25}{16}}}|
Add 9 and 16 to get 25.
|\frac{-\frac{3}{2}}{\frac{5}{4}}|
Rewrite the square root of the division \frac{25}{16} as the division of square roots \frac{\sqrt{25}}{\sqrt{16}}. Take the square root of both numerator and denominator.
|-\frac{3}{2}\times \frac{4}{5}|
Divide -\frac{3}{2} by \frac{5}{4} by multiplying -\frac{3}{2} by the reciprocal of \frac{5}{4}.
|\frac{-3\times 4}{2\times 5}|
Multiply -\frac{3}{2} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
|\frac{-12}{10}|
Do the multiplications in the fraction \frac{-3\times 4}{2\times 5}.
|-\frac{6}{5}|
Reduce the fraction \frac{-12}{10} to lowest terms by extracting and canceling out 2.
\frac{6}{5}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{6}{5} is \frac{6}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}