Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

|\frac{\frac{3\times 2}{4}-3+0}{\sqrt{\left(\frac{3}{4}\right)^{2}+\left(-1\right)^{2}}}|
Express \frac{3}{4}\times 2 as a single fraction.
|\frac{\frac{6}{4}-3+0}{\sqrt{\left(\frac{3}{4}\right)^{2}+\left(-1\right)^{2}}}|
Multiply 3 and 2 to get 6.
|\frac{\frac{3}{2}-3+0}{\sqrt{\left(\frac{3}{4}\right)^{2}+\left(-1\right)^{2}}}|
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
|\frac{\frac{3}{2}-\frac{6}{2}+0}{\sqrt{\left(\frac{3}{4}\right)^{2}+\left(-1\right)^{2}}}|
Convert 3 to fraction \frac{6}{2}.
|\frac{\frac{3-6}{2}+0}{\sqrt{\left(\frac{3}{4}\right)^{2}+\left(-1\right)^{2}}}|
Since \frac{3}{2} and \frac{6}{2} have the same denominator, subtract them by subtracting their numerators.
|\frac{-\frac{3}{2}+0}{\sqrt{\left(\frac{3}{4}\right)^{2}+\left(-1\right)^{2}}}|
Subtract 6 from 3 to get -3.
|\frac{-\frac{3}{2}}{\sqrt{\left(\frac{3}{4}\right)^{2}+\left(-1\right)^{2}}}|
Add -\frac{3}{2} and 0 to get -\frac{3}{2}.
|\frac{-\frac{3}{2}}{\sqrt{\frac{9}{16}+\left(-1\right)^{2}}}|
Calculate \frac{3}{4} to the power of 2 and get \frac{9}{16}.
|\frac{-\frac{3}{2}}{\sqrt{\frac{9}{16}+1}}|
Calculate -1 to the power of 2 and get 1.
|\frac{-\frac{3}{2}}{\sqrt{\frac{9}{16}+\frac{16}{16}}}|
Convert 1 to fraction \frac{16}{16}.
|\frac{-\frac{3}{2}}{\sqrt{\frac{9+16}{16}}}|
Since \frac{9}{16} and \frac{16}{16} have the same denominator, add them by adding their numerators.
|\frac{-\frac{3}{2}}{\sqrt{\frac{25}{16}}}|
Add 9 and 16 to get 25.
|\frac{-\frac{3}{2}}{\frac{5}{4}}|
Rewrite the square root of the division \frac{25}{16} as the division of square roots \frac{\sqrt{25}}{\sqrt{16}}. Take the square root of both numerator and denominator.
|-\frac{3}{2}\times \frac{4}{5}|
Divide -\frac{3}{2} by \frac{5}{4} by multiplying -\frac{3}{2} by the reciprocal of \frac{5}{4}.
|\frac{-3\times 4}{2\times 5}|
Multiply -\frac{3}{2} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
|\frac{-12}{10}|
Do the multiplications in the fraction \frac{-3\times 4}{2\times 5}.
|-\frac{6}{5}|
Reduce the fraction \frac{-12}{10} to lowest terms by extracting and canceling out 2.
\frac{6}{5}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{6}{5} is \frac{6}{5}.