Solve for r
r=5\sqrt{2}+5\approx 12.071067812
r=5-5\sqrt{2}\approx -2.071067812
Share
Copied to clipboard
r^{2}\times 2=\left(r+5\right)^{2}
Cancel out \pi on both sides.
r^{2}\times 2=r^{2}+10r+25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(r+5\right)^{2}.
r^{2}\times 2-r^{2}=10r+25
Subtract r^{2} from both sides.
r^{2}=10r+25
Combine r^{2}\times 2 and -r^{2} to get r^{2}.
r^{2}-10r=25
Subtract 10r from both sides.
r^{2}-10r-25=0
Subtract 25 from both sides.
r=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-25\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-10\right)±\sqrt{100-4\left(-25\right)}}{2}
Square -10.
r=\frac{-\left(-10\right)±\sqrt{100+100}}{2}
Multiply -4 times -25.
r=\frac{-\left(-10\right)±\sqrt{200}}{2}
Add 100 to 100.
r=\frac{-\left(-10\right)±10\sqrt{2}}{2}
Take the square root of 200.
r=\frac{10±10\sqrt{2}}{2}
The opposite of -10 is 10.
r=\frac{10\sqrt{2}+10}{2}
Now solve the equation r=\frac{10±10\sqrt{2}}{2} when ± is plus. Add 10 to 10\sqrt{2}.
r=5\sqrt{2}+5
Divide 10+10\sqrt{2} by 2.
r=\frac{10-10\sqrt{2}}{2}
Now solve the equation r=\frac{10±10\sqrt{2}}{2} when ± is minus. Subtract 10\sqrt{2} from 10.
r=5-5\sqrt{2}
Divide 10-10\sqrt{2} by 2.
r=5\sqrt{2}+5 r=5-5\sqrt{2}
The equation is now solved.
r^{2}\times 2=\left(r+5\right)^{2}
Cancel out \pi on both sides.
r^{2}\times 2=r^{2}+10r+25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(r+5\right)^{2}.
r^{2}\times 2-r^{2}=10r+25
Subtract r^{2} from both sides.
r^{2}=10r+25
Combine r^{2}\times 2 and -r^{2} to get r^{2}.
r^{2}-10r=25
Subtract 10r from both sides.
r^{2}-10r+\left(-5\right)^{2}=25+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}-10r+25=25+25
Square -5.
r^{2}-10r+25=50
Add 25 to 25.
\left(r-5\right)^{2}=50
Factor r^{2}-10r+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-5\right)^{2}}=\sqrt{50}
Take the square root of both sides of the equation.
r-5=5\sqrt{2} r-5=-5\sqrt{2}
Simplify.
r=5\sqrt{2}+5 r=5-5\sqrt{2}
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}