Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

r^{2}\times 2=\left(r+5\right)^{2}
Cancel out \pi on both sides.
r^{2}\times 2=r^{2}+10r+25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(r+5\right)^{2}.
r^{2}\times 2-r^{2}=10r+25
Subtract r^{2} from both sides.
r^{2}=10r+25
Combine r^{2}\times 2 and -r^{2} to get r^{2}.
r^{2}-10r=25
Subtract 10r from both sides.
r^{2}-10r-25=0
Subtract 25 from both sides.
r=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-25\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-10\right)±\sqrt{100-4\left(-25\right)}}{2}
Square -10.
r=\frac{-\left(-10\right)±\sqrt{100+100}}{2}
Multiply -4 times -25.
r=\frac{-\left(-10\right)±\sqrt{200}}{2}
Add 100 to 100.
r=\frac{-\left(-10\right)±10\sqrt{2}}{2}
Take the square root of 200.
r=\frac{10±10\sqrt{2}}{2}
The opposite of -10 is 10.
r=\frac{10\sqrt{2}+10}{2}
Now solve the equation r=\frac{10±10\sqrt{2}}{2} when ± is plus. Add 10 to 10\sqrt{2}.
r=5\sqrt{2}+5
Divide 10+10\sqrt{2} by 2.
r=\frac{10-10\sqrt{2}}{2}
Now solve the equation r=\frac{10±10\sqrt{2}}{2} when ± is minus. Subtract 10\sqrt{2} from 10.
r=5-5\sqrt{2}
Divide 10-10\sqrt{2} by 2.
r=5\sqrt{2}+5 r=5-5\sqrt{2}
The equation is now solved.
r^{2}\times 2=\left(r+5\right)^{2}
Cancel out \pi on both sides.
r^{2}\times 2=r^{2}+10r+25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(r+5\right)^{2}.
r^{2}\times 2-r^{2}=10r+25
Subtract r^{2} from both sides.
r^{2}=10r+25
Combine r^{2}\times 2 and -r^{2} to get r^{2}.
r^{2}-10r=25
Subtract 10r from both sides.
r^{2}-10r+\left(-5\right)^{2}=25+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}-10r+25=25+25
Square -5.
r^{2}-10r+25=50
Add 25 to 25.
\left(r-5\right)^{2}=50
Factor r^{2}-10r+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-5\right)^{2}}=\sqrt{50}
Take the square root of both sides of the equation.
r-5=5\sqrt{2} r-5=-5\sqrt{2}
Simplify.
r=5\sqrt{2}+5 r=5-5\sqrt{2}
Add 5 to both sides of the equation.