Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

z^{3}+\left(2\sqrt{2}-2\right)z^{2}+4\left(1-\sqrt{2}\right)z-8=\left(z^{2}-2\right)\left(z+xz+y\right)
Use the distributive property to multiply 2 by \sqrt{2}-1.
z^{3}+2\sqrt{2}z^{2}-2z^{2}+4\left(1-\sqrt{2}\right)z-8=\left(z^{2}-2\right)\left(z+xz+y\right)
Use the distributive property to multiply 2\sqrt{2}-2 by z^{2}.
z^{3}+2\sqrt{2}z^{2}-2z^{2}+\left(4-4\sqrt{2}\right)z-8=\left(z^{2}-2\right)\left(z+xz+y\right)
Use the distributive property to multiply 4 by 1-\sqrt{2}.
z^{3}+2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8=\left(z^{2}-2\right)\left(z+xz+y\right)
Use the distributive property to multiply 4-4\sqrt{2} by z.
z^{3}+2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8=z^{3}+xz^{3}+z^{2}y-2z-2xz-2y
Use the distributive property to multiply z^{2}-2 by z+xz+y.
z^{3}+xz^{3}+z^{2}y-2z-2xz-2y=z^{3}+2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8
Swap sides so that all variable terms are on the left hand side.
xz^{3}+z^{2}y-2z-2xz-2y=z^{3}+2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8-z^{3}
Subtract z^{3} from both sides.
xz^{3}+z^{2}y-2z-2xz-2y=2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8
Combine z^{3} and -z^{3} to get 0.
xz^{3}-2z-2xz-2y=2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8-z^{2}y
Subtract z^{2}y from both sides.
xz^{3}-2xz-2y=2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8-z^{2}y+2z
Add 2z to both sides.
xz^{3}-2xz=2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8-z^{2}y+2z+2y
Add 2y to both sides.
xz^{3}-2xz=2\sqrt{2}z^{2}-2z^{2}+6z-4\sqrt{2}z-8-z^{2}y+2y
Combine 4z and 2z to get 6z.
\left(z^{3}-2z\right)x=2\sqrt{2}z^{2}-2z^{2}+6z-4\sqrt{2}z-8-z^{2}y+2y
Combine all terms containing x.
\left(z^{3}-2z\right)x=-yz^{2}+2\sqrt{2}z^{2}-2z^{2}-4\sqrt{2}z+2y+6z-8
The equation is in standard form.
\frac{\left(z^{3}-2z\right)x}{z^{3}-2z}=\frac{-yz^{2}+2\sqrt{2}z^{2}-2z^{2}-4\sqrt{2}z+2y+6z-8}{z^{3}-2z}
Divide both sides by z^{3}-2z.
x=\frac{-yz^{2}+2\sqrt{2}z^{2}-2z^{2}-4\sqrt{2}z+2y+6z-8}{z^{3}-2z}
Dividing by z^{3}-2z undoes the multiplication by z^{3}-2z.
x=\frac{-yz^{2}+2\sqrt{2}z^{2}-2z^{2}-4\sqrt{2}z+2y+6z-8}{z\left(z^{2}-2\right)}
Divide 2z^{2}\sqrt{2}-2z^{2}+6z-4\sqrt{2}z-8-z^{2}y+2y by z^{3}-2z.
z^{3}+\left(2\sqrt{2}-2\right)z^{2}+4\left(1-\sqrt{2}\right)z-8=\left(z^{2}-2\right)\left(z+xz+y\right)
Use the distributive property to multiply 2 by \sqrt{2}-1.
z^{3}+2\sqrt{2}z^{2}-2z^{2}+4\left(1-\sqrt{2}\right)z-8=\left(z^{2}-2\right)\left(z+xz+y\right)
Use the distributive property to multiply 2\sqrt{2}-2 by z^{2}.
z^{3}+2\sqrt{2}z^{2}-2z^{2}+\left(4-4\sqrt{2}\right)z-8=\left(z^{2}-2\right)\left(z+xz+y\right)
Use the distributive property to multiply 4 by 1-\sqrt{2}.
z^{3}+2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8=\left(z^{2}-2\right)\left(z+xz+y\right)
Use the distributive property to multiply 4-4\sqrt{2} by z.
z^{3}+2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8=z^{3}+xz^{3}+z^{2}y-2z-2xz-2y
Use the distributive property to multiply z^{2}-2 by z+xz+y.
z^{3}+xz^{3}+z^{2}y-2z-2xz-2y=z^{3}+2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8
Swap sides so that all variable terms are on the left hand side.
xz^{3}+z^{2}y-2z-2xz-2y=z^{3}+2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8-z^{3}
Subtract z^{3} from both sides.
xz^{3}+z^{2}y-2z-2xz-2y=2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8
Combine z^{3} and -z^{3} to get 0.
z^{2}y-2z-2xz-2y=2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8-xz^{3}
Subtract xz^{3} from both sides.
z^{2}y-2xz-2y=2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8-xz^{3}+2z
Add 2z to both sides.
z^{2}y-2y=2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8-xz^{3}+2z+2xz
Add 2xz to both sides.
z^{2}y-2y=2\sqrt{2}z^{2}-2z^{2}+6z-4\sqrt{2}z-8-xz^{3}+2xz
Combine 4z and 2z to get 6z.
\left(z^{2}-2\right)y=2\sqrt{2}z^{2}-2z^{2}+6z-4\sqrt{2}z-8-xz^{3}+2xz
Combine all terms containing y.
\left(z^{2}-2\right)y=-xz^{3}+2\sqrt{2}z^{2}+2xz-2z^{2}-4\sqrt{2}z+6z-8
The equation is in standard form.
\frac{\left(z^{2}-2\right)y}{z^{2}-2}=\frac{-xz^{3}+2\sqrt{2}z^{2}+2xz-2z^{2}-4\sqrt{2}z+6z-8}{z^{2}-2}
Divide both sides by z^{2}-2.
y=\frac{-xz^{3}+2\sqrt{2}z^{2}+2xz-2z^{2}-4\sqrt{2}z+6z-8}{z^{2}-2}
Dividing by z^{2}-2 undoes the multiplication by z^{2}-2.