Solve for x
\left\{\begin{matrix}x=-\frac{-2\sqrt{2}z+y-4}{z}\text{, }&z\neq 2\text{ and }z\neq 0\\x\in \mathrm{R}\text{, }&\left(z=-\frac{\sqrt{2}\left(-\sqrt{y^{2}-8\sqrt{2}y-8y+32\sqrt{2}+48}-y+4-4\sqrt{2}\right)}{8}\text{ and }y\leq 4\sqrt{2}+4\right)\text{ or }\left(z=0\text{ and }y=4\right)\text{ or }\left(z=-\frac{\sqrt{2}\left(\sqrt{y^{2}-8\sqrt{2}y-8y+32\sqrt{2}+48}-y+4-4\sqrt{2}\right)}{8}\text{ and }y\geq 4\sqrt{2}+4\right)\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=-xz+2\sqrt{2}z+4\text{, }&z\neq 2\\y\in \mathrm{R}\text{, }&\left(z=\frac{-\sqrt{x^{2}-4\sqrt{2}x-4x+8\sqrt{2}+12}+x+2-2\sqrt{2}}{x-2\sqrt{2}}\text{ and }x\leq 2\sqrt{2}+2\text{ and }x>2\sqrt{2}\right)\text{ or }\left(z=\frac{-\sqrt{x^{2}-4\sqrt{2}x-4x+8\sqrt{2}+12}+x+2-2\sqrt{2}}{x-2\sqrt{2}}\text{ and }x<2\sqrt{2}\right)\text{ or }\left(x\geq 2\sqrt{2}+2\text{ and }z=\frac{\sqrt{x^{2}-4\sqrt{2}x-4x+8\sqrt{2}+12}+x+2-2\sqrt{2}}{x-2\sqrt{2}}\right)\text{ or }\left(z=2\text{ and }x=2\sqrt{2}\right)\end{matrix}\right.
Share
Copied to clipboard
z^{3}+xz^{2}-2z^{2}+\left(y-2x\right)z-2y=z^{3}+2\left(\sqrt{2}-1\right)z^{2}+4\left(1-\sqrt{2}\right)z-8
Use the distributive property to multiply x-2 by z^{2}.
z^{3}+xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+2\left(\sqrt{2}-1\right)z^{2}+4\left(1-\sqrt{2}\right)z-8
Use the distributive property to multiply y-2x by z.
z^{3}+xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+\left(2\sqrt{2}-2\right)z^{2}+4\left(1-\sqrt{2}\right)z-8
Use the distributive property to multiply 2 by \sqrt{2}-1.
z^{3}+xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+2\sqrt{2}z^{2}-2z^{2}+4\left(1-\sqrt{2}\right)z-8
Use the distributive property to multiply 2\sqrt{2}-2 by z^{2}.
z^{3}+xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+2\sqrt{2}z^{2}-2z^{2}+\left(4-4\sqrt{2}\right)z-8
Use the distributive property to multiply 4 by 1-\sqrt{2}.
z^{3}+xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8
Use the distributive property to multiply 4-4\sqrt{2} by z.
xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8-z^{3}
Subtract z^{3} from both sides.
xz^{2}-2z^{2}+yz-2xz-2y=2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8
Combine z^{3} and -z^{3} to get 0.
xz^{2}+yz-2xz-2y=2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8+2z^{2}
Add 2z^{2} to both sides.
xz^{2}+yz-2xz-2y=2\sqrt{2}z^{2}+4z-4\sqrt{2}z-8
Combine -2z^{2} and 2z^{2} to get 0.
xz^{2}-2xz-2y=2\sqrt{2}z^{2}+4z-4\sqrt{2}z-8-yz
Subtract yz from both sides.
xz^{2}-2xz=2\sqrt{2}z^{2}+4z-4\sqrt{2}z-8-yz+2y
Add 2y to both sides.
\left(z^{2}-2z\right)x=2\sqrt{2}z^{2}+4z-4\sqrt{2}z-8-yz+2y
Combine all terms containing x.
\left(z^{2}-2z\right)x=-yz+2\sqrt{2}z^{2}-4\sqrt{2}z+2y+4z-8
The equation is in standard form.
\frac{\left(z^{2}-2z\right)x}{z^{2}-2z}=\frac{-yz+2\sqrt{2}z^{2}-4\sqrt{2}z+2y+4z-8}{z^{2}-2z}
Divide both sides by z^{2}-2z.
x=\frac{-yz+2\sqrt{2}z^{2}-4\sqrt{2}z+2y+4z-8}{z^{2}-2z}
Dividing by z^{2}-2z undoes the multiplication by z^{2}-2z.
x=\frac{2\sqrt{2}z-y+4}{z}
Divide 2z^{2}\sqrt{2}+4z-4\sqrt{2}z-8-yz+2y by z^{2}-2z.
z^{3}+xz^{2}-2z^{2}+\left(y-2x\right)z-2y=z^{3}+2\left(\sqrt{2}-1\right)z^{2}+4\left(1-\sqrt{2}\right)z-8
Use the distributive property to multiply x-2 by z^{2}.
z^{3}+xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+2\left(\sqrt{2}-1\right)z^{2}+4\left(1-\sqrt{2}\right)z-8
Use the distributive property to multiply y-2x by z.
z^{3}+xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+\left(2\sqrt{2}-2\right)z^{2}+4\left(1-\sqrt{2}\right)z-8
Use the distributive property to multiply 2 by \sqrt{2}-1.
z^{3}+xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+2\sqrt{2}z^{2}-2z^{2}+4\left(1-\sqrt{2}\right)z-8
Use the distributive property to multiply 2\sqrt{2}-2 by z^{2}.
z^{3}+xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+2\sqrt{2}z^{2}-2z^{2}+\left(4-4\sqrt{2}\right)z-8
Use the distributive property to multiply 4 by 1-\sqrt{2}.
z^{3}+xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8
Use the distributive property to multiply 4-4\sqrt{2} by z.
xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8-z^{3}
Subtract z^{3} from both sides.
xz^{2}-2z^{2}+yz-2xz-2y=2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8
Combine z^{3} and -z^{3} to get 0.
-2z^{2}+yz-2xz-2y=2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8-xz^{2}
Subtract xz^{2} from both sides.
yz-2xz-2y=2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8-xz^{2}+2z^{2}
Add 2z^{2} to both sides.
yz-2y=2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8-xz^{2}+2z^{2}+2xz
Add 2xz to both sides.
yz-2y=2\sqrt{2}z^{2}+4z-4\sqrt{2}z-8-xz^{2}+2xz
Combine -2z^{2} and 2z^{2} to get 0.
\left(z-2\right)y=2\sqrt{2}z^{2}+4z-4\sqrt{2}z-8-xz^{2}+2xz
Combine all terms containing y.
\left(z-2\right)y=-xz^{2}+2\sqrt{2}z^{2}+2xz-4\sqrt{2}z+4z-8
The equation is in standard form.
\frac{\left(z-2\right)y}{z-2}=\frac{-xz^{2}+2\sqrt{2}z^{2}+2xz-4\sqrt{2}z+4z-8}{z-2}
Divide both sides by -2+z.
y=\frac{-xz^{2}+2\sqrt{2}z^{2}+2xz-4\sqrt{2}z+4z-8}{z-2}
Dividing by -2+z undoes the multiplication by -2+z.
y=-xz+2\sqrt{2}z+4
Divide 2z^{2}\sqrt{2}+4z-4\sqrt{2}z-8-xz^{2}+2xz by -2+z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}