Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

z^{3}+xz^{2}-2z^{2}+\left(y-2x\right)z-2y=z^{3}+2\left(\sqrt{2}-1\right)z^{2}+4\left(1-\sqrt{2}\right)z-8
Use the distributive property to multiply x-2 by z^{2}.
z^{3}+xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+2\left(\sqrt{2}-1\right)z^{2}+4\left(1-\sqrt{2}\right)z-8
Use the distributive property to multiply y-2x by z.
z^{3}+xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+\left(2\sqrt{2}-2\right)z^{2}+4\left(1-\sqrt{2}\right)z-8
Use the distributive property to multiply 2 by \sqrt{2}-1.
z^{3}+xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+2\sqrt{2}z^{2}-2z^{2}+4\left(1-\sqrt{2}\right)z-8
Use the distributive property to multiply 2\sqrt{2}-2 by z^{2}.
z^{3}+xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+2\sqrt{2}z^{2}-2z^{2}+\left(4-4\sqrt{2}\right)z-8
Use the distributive property to multiply 4 by 1-\sqrt{2}.
z^{3}+xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8
Use the distributive property to multiply 4-4\sqrt{2} by z.
xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8-z^{3}
Subtract z^{3} from both sides.
xz^{2}-2z^{2}+yz-2xz-2y=2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8
Combine z^{3} and -z^{3} to get 0.
xz^{2}+yz-2xz-2y=2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8+2z^{2}
Add 2z^{2} to both sides.
xz^{2}+yz-2xz-2y=2\sqrt{2}z^{2}+4z-4\sqrt{2}z-8
Combine -2z^{2} and 2z^{2} to get 0.
xz^{2}-2xz-2y=2\sqrt{2}z^{2}+4z-4\sqrt{2}z-8-yz
Subtract yz from both sides.
xz^{2}-2xz=2\sqrt{2}z^{2}+4z-4\sqrt{2}z-8-yz+2y
Add 2y to both sides.
\left(z^{2}-2z\right)x=2\sqrt{2}z^{2}+4z-4\sqrt{2}z-8-yz+2y
Combine all terms containing x.
\left(z^{2}-2z\right)x=-yz+2\sqrt{2}z^{2}-4\sqrt{2}z+2y+4z-8
The equation is in standard form.
\frac{\left(z^{2}-2z\right)x}{z^{2}-2z}=\frac{-yz+2\sqrt{2}z^{2}-4\sqrt{2}z+2y+4z-8}{z^{2}-2z}
Divide both sides by z^{2}-2z.
x=\frac{-yz+2\sqrt{2}z^{2}-4\sqrt{2}z+2y+4z-8}{z^{2}-2z}
Dividing by z^{2}-2z undoes the multiplication by z^{2}-2z.
x=\frac{2\sqrt{2}z-y+4}{z}
Divide 2z^{2}\sqrt{2}+4z-4\sqrt{2}z-8-yz+2y by z^{2}-2z.
z^{3}+xz^{2}-2z^{2}+\left(y-2x\right)z-2y=z^{3}+2\left(\sqrt{2}-1\right)z^{2}+4\left(1-\sqrt{2}\right)z-8
Use the distributive property to multiply x-2 by z^{2}.
z^{3}+xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+2\left(\sqrt{2}-1\right)z^{2}+4\left(1-\sqrt{2}\right)z-8
Use the distributive property to multiply y-2x by z.
z^{3}+xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+\left(2\sqrt{2}-2\right)z^{2}+4\left(1-\sqrt{2}\right)z-8
Use the distributive property to multiply 2 by \sqrt{2}-1.
z^{3}+xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+2\sqrt{2}z^{2}-2z^{2}+4\left(1-\sqrt{2}\right)z-8
Use the distributive property to multiply 2\sqrt{2}-2 by z^{2}.
z^{3}+xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+2\sqrt{2}z^{2}-2z^{2}+\left(4-4\sqrt{2}\right)z-8
Use the distributive property to multiply 4 by 1-\sqrt{2}.
z^{3}+xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8
Use the distributive property to multiply 4-4\sqrt{2} by z.
xz^{2}-2z^{2}+yz-2xz-2y=z^{3}+2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8-z^{3}
Subtract z^{3} from both sides.
xz^{2}-2z^{2}+yz-2xz-2y=2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8
Combine z^{3} and -z^{3} to get 0.
-2z^{2}+yz-2xz-2y=2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8-xz^{2}
Subtract xz^{2} from both sides.
yz-2xz-2y=2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8-xz^{2}+2z^{2}
Add 2z^{2} to both sides.
yz-2y=2\sqrt{2}z^{2}-2z^{2}+4z-4\sqrt{2}z-8-xz^{2}+2z^{2}+2xz
Add 2xz to both sides.
yz-2y=2\sqrt{2}z^{2}+4z-4\sqrt{2}z-8-xz^{2}+2xz
Combine -2z^{2} and 2z^{2} to get 0.
\left(z-2\right)y=2\sqrt{2}z^{2}+4z-4\sqrt{2}z-8-xz^{2}+2xz
Combine all terms containing y.
\left(z-2\right)y=-xz^{2}+2\sqrt{2}z^{2}+2xz-4\sqrt{2}z+4z-8
The equation is in standard form.
\frac{\left(z-2\right)y}{z-2}=\frac{-xz^{2}+2\sqrt{2}z^{2}+2xz-4\sqrt{2}z+4z-8}{z-2}
Divide both sides by -2+z.
y=\frac{-xz^{2}+2\sqrt{2}z^{2}+2xz-4\sqrt{2}z+4z-8}{z-2}
Dividing by -2+z undoes the multiplication by -2+z.
y=-xz+2\sqrt{2}z+4
Divide 2z^{2}\sqrt{2}+4z-4\sqrt{2}z-8-xz^{2}+2xz by -2+z.