Solve for x
\left\{\begin{matrix}x=\frac{z\left(z-y\right)}{y+1}\text{, }&y\neq -1\\x\in \mathrm{R}\text{, }&\left(z=0\text{ or }z=-1\right)\text{ and }y=-1\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=\frac{z^{2}-x}{x+z}\text{, }&z\neq -x\\y\in \mathrm{R}\text{, }&\left(x=1\text{ and }z=-1\right)\text{ or }\left(x=0\text{ and }z=0\right)\end{matrix}\right.
Share
Copied to clipboard
-xy-yz-x=-z^{2}
Subtract z^{2} from both sides. Anything subtracted from zero gives its negation.
-xy-x=-z^{2}+yz
Add yz to both sides.
\left(-y-1\right)x=-z^{2}+yz
Combine all terms containing x.
\left(-y-1\right)x=yz-z^{2}
The equation is in standard form.
\frac{\left(-y-1\right)x}{-y-1}=\frac{z\left(y-z\right)}{-y-1}
Divide both sides by -y-1.
x=\frac{z\left(y-z\right)}{-y-1}
Dividing by -y-1 undoes the multiplication by -y-1.
x=-\frac{z\left(y-z\right)}{y+1}
Divide z\left(-z+y\right) by -y-1.
-xy-yz-x=-z^{2}
Subtract z^{2} from both sides. Anything subtracted from zero gives its negation.
-xy-yz=-z^{2}+x
Add x to both sides.
\left(-x-z\right)y=-z^{2}+x
Combine all terms containing y.
\left(-x-z\right)y=x-z^{2}
The equation is in standard form.
\frac{\left(-x-z\right)y}{-x-z}=\frac{x-z^{2}}{-x-z}
Divide both sides by -x-z.
y=\frac{x-z^{2}}{-x-z}
Dividing by -x-z undoes the multiplication by -x-z.
y=-\frac{x-z^{2}}{x+z}
Divide x-z^{2} by -x-z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}