Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z^{2}-\frac{1}{40000000000}z+\frac{1}{62500000000}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-\left(-\frac{1}{40000000000}\right)±\sqrt{\left(-\frac{1}{40000000000}\right)^{2}-4\times \frac{1}{62500000000}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{1}{40000000000} for b, and \frac{1}{62500000000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-\frac{1}{40000000000}\right)±\sqrt{\frac{1}{1600000000000000000000}-4\times \frac{1}{62500000000}}}{2}
Square -\frac{1}{40000000000} by squaring both the numerator and the denominator of the fraction.
z=\frac{-\left(-\frac{1}{40000000000}\right)±\sqrt{\frac{1}{1600000000000000000000}-\frac{1}{15625000000}}}{2}
Multiply -4 times \frac{1}{62500000000}.
z=\frac{-\left(-\frac{1}{40000000000}\right)±\sqrt{-\frac{102399999999}{1600000000000000000000}}}{2}
Add \frac{1}{1600000000000000000000} to -\frac{1}{15625000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
z=\frac{-\left(-\frac{1}{40000000000}\right)±\frac{\sqrt{102399999999}i}{40000000000}}{2}
Take the square root of -\frac{102399999999}{1600000000000000000000}.
z=\frac{\frac{1}{40000000000}±\frac{\sqrt{102399999999}i}{40000000000}}{2}
The opposite of -\frac{1}{40000000000} is \frac{1}{40000000000}.
z=\frac{1+\sqrt{102399999999}i}{2\times 40000000000}
Now solve the equation z=\frac{\frac{1}{40000000000}±\frac{\sqrt{102399999999}i}{40000000000}}{2} when ± is plus. Add \frac{1}{40000000000} to \frac{i\sqrt{102399999999}}{40000000000}.
z=\frac{1+\sqrt{102399999999}i}{80000000000}
Divide \frac{1+i\sqrt{102399999999}}{40000000000} by 2.
z=\frac{-\sqrt{102399999999}i+1}{2\times 40000000000}
Now solve the equation z=\frac{\frac{1}{40000000000}±\frac{\sqrt{102399999999}i}{40000000000}}{2} when ± is minus. Subtract \frac{i\sqrt{102399999999}}{40000000000} from \frac{1}{40000000000}.
z=\frac{-\sqrt{102399999999}i+1}{80000000000}
Divide \frac{1-i\sqrt{102399999999}}{40000000000} by 2.
z=\frac{1+\sqrt{102399999999}i}{80000000000} z=\frac{-\sqrt{102399999999}i+1}{80000000000}
The equation is now solved.
z^{2}-\frac{1}{40000000000}z+\frac{1}{62500000000}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
z^{2}-\frac{1}{40000000000}z+\frac{1}{62500000000}-\frac{1}{62500000000}=-\frac{1}{62500000000}
Subtract \frac{1}{62500000000} from both sides of the equation.
z^{2}-\frac{1}{40000000000}z=-\frac{1}{62500000000}
Subtracting \frac{1}{62500000000} from itself leaves 0.
z^{2}-\frac{1}{40000000000}z+\left(-\frac{1}{80000000000}\right)^{2}=-\frac{1}{62500000000}+\left(-\frac{1}{80000000000}\right)^{2}
Divide -\frac{1}{40000000000}, the coefficient of the x term, by 2 to get -\frac{1}{80000000000}. Then add the square of -\frac{1}{80000000000} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}-\frac{1}{40000000000}z+\frac{1}{6400000000000000000000}=-\frac{1}{62500000000}+\frac{1}{6400000000000000000000}
Square -\frac{1}{80000000000} by squaring both the numerator and the denominator of the fraction.
z^{2}-\frac{1}{40000000000}z+\frac{1}{6400000000000000000000}=-\frac{102399999999}{6400000000000000000000}
Add -\frac{1}{62500000000} to \frac{1}{6400000000000000000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(z-\frac{1}{80000000000}\right)^{2}=-\frac{102399999999}{6400000000000000000000}
Factor z^{2}-\frac{1}{40000000000}z+\frac{1}{6400000000000000000000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{1}{80000000000}\right)^{2}}=\sqrt{-\frac{102399999999}{6400000000000000000000}}
Take the square root of both sides of the equation.
z-\frac{1}{80000000000}=\frac{\sqrt{102399999999}i}{80000000000} z-\frac{1}{80000000000}=-\frac{\sqrt{102399999999}i}{80000000000}
Simplify.
z=\frac{1+\sqrt{102399999999}i}{80000000000} z=\frac{-\sqrt{102399999999}i+1}{80000000000}
Add \frac{1}{80000000000} to both sides of the equation.