Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

z\left(z-10\right)
Factor out z.
z^{2}-10z=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
z=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-\left(-10\right)±10}{2}
Take the square root of \left(-10\right)^{2}.
z=\frac{10±10}{2}
The opposite of -10 is 10.
z=\frac{20}{2}
Now solve the equation z=\frac{10±10}{2} when ± is plus. Add 10 to 10.
z=10
Divide 20 by 2.
z=\frac{0}{2}
Now solve the equation z=\frac{10±10}{2} when ± is minus. Subtract 10 from 10.
z=0
Divide 0 by 2.
z^{2}-10z=\left(z-10\right)z
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 10 for x_{1} and 0 for x_{2}.