Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z^{2}-4z=1
Subtract 4z from both sides.
z^{2}-4z-1=0
Subtract 1 from both sides.
z=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)}}{2}
Square -4.
z=\frac{-\left(-4\right)±\sqrt{16+4}}{2}
Multiply -4 times -1.
z=\frac{-\left(-4\right)±\sqrt{20}}{2}
Add 16 to 4.
z=\frac{-\left(-4\right)±2\sqrt{5}}{2}
Take the square root of 20.
z=\frac{4±2\sqrt{5}}{2}
The opposite of -4 is 4.
z=\frac{2\sqrt{5}+4}{2}
Now solve the equation z=\frac{4±2\sqrt{5}}{2} when ± is plus. Add 4 to 2\sqrt{5}.
z=\sqrt{5}+2
Divide 4+2\sqrt{5} by 2.
z=\frac{4-2\sqrt{5}}{2}
Now solve the equation z=\frac{4±2\sqrt{5}}{2} when ± is minus. Subtract 2\sqrt{5} from 4.
z=2-\sqrt{5}
Divide 4-2\sqrt{5} by 2.
z=\sqrt{5}+2 z=2-\sqrt{5}
The equation is now solved.
z^{2}-4z=1
Subtract 4z from both sides.
z^{2}-4z+\left(-2\right)^{2}=1+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}-4z+4=1+4
Square -2.
z^{2}-4z+4=5
Add 1 to 4.
\left(z-2\right)^{2}=5
Factor z^{2}-4z+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-2\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
z-2=\sqrt{5} z-2=-\sqrt{5}
Simplify.
z=\sqrt{5}+2 z=2-\sqrt{5}
Add 2 to both sides of the equation.