Solve for x
\left\{\begin{matrix}x=-z+\frac{y}{z}-2\text{, }&z\neq 0\\x\in \mathrm{R}\text{, }&y=0\text{ and }z=0\end{matrix}\right.
Solve for y
y=z\left(x+z+2\right)
Share
Copied to clipboard
z^{2}+xz+2z+y\left(1-2\right)=0
Use the distributive property to multiply x+2 by z.
z^{2}+xz+2z+y\left(-1\right)=0
Subtract 2 from 1 to get -1.
xz+2z+y\left(-1\right)=-z^{2}
Subtract z^{2} from both sides. Anything subtracted from zero gives its negation.
xz+y\left(-1\right)=-z^{2}-2z
Subtract 2z from both sides.
xz=-z^{2}-2z-y\left(-1\right)
Subtract y\left(-1\right) from both sides.
xz=-z^{2}-2z+y
Multiply -1 and -1 to get 1.
zx=y-z^{2}-2z
The equation is in standard form.
\frac{zx}{z}=\frac{y-z^{2}-2z}{z}
Divide both sides by z.
x=\frac{y-z^{2}-2z}{z}
Dividing by z undoes the multiplication by z.
x=-z+\frac{y}{z}-2
Divide -z^{2}-2z+y by z.
z^{2}+xz+2z+y\left(1-2\right)=0
Use the distributive property to multiply x+2 by z.
z^{2}+xz+2z+y\left(-1\right)=0
Subtract 2 from 1 to get -1.
xz+2z+y\left(-1\right)=-z^{2}
Subtract z^{2} from both sides. Anything subtracted from zero gives its negation.
2z+y\left(-1\right)=-z^{2}-xz
Subtract xz from both sides.
y\left(-1\right)=-z^{2}-xz-2z
Subtract 2z from both sides.
-y=-xz-z^{2}-2z
The equation is in standard form.
\frac{-y}{-1}=-\frac{z\left(x+z+2\right)}{-1}
Divide both sides by -1.
y=-\frac{z\left(x+z+2\right)}{-1}
Dividing by -1 undoes the multiplication by -1.
y=z\left(x+z+2\right)
Divide -z\left(2+z+x\right) by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}