Factor
y\left(y-3\right)\left(y+3\right)\left(y^{2}+9\right)
Evaluate
y\left(y^{4}-81\right)
Graph
Share
Copied to clipboard
y\left(y^{4}-81\right)
Factor out y.
\left(y^{2}-9\right)\left(y^{2}+9\right)
Consider y^{4}-81. Rewrite y^{4}-81 as \left(y^{2}\right)^{2}-9^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(y-3\right)\left(y+3\right)
Consider y^{2}-9. Rewrite y^{2}-9 as y^{2}-3^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
y\left(y-3\right)\left(y+3\right)\left(y^{2}+9\right)
Rewrite the complete factored expression. Polynomial y^{2}+9 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}