Factor
\left(y-7\right)\left(y+2\right)
Evaluate
\left(y-7\right)\left(y+2\right)
Graph
Share
Copied to clipboard
a+b=-5 ab=1\left(-14\right)=-14
Factor the expression by grouping. First, the expression needs to be rewritten as y^{2}+ay+by-14. To find a and b, set up a system to be solved.
1,-14 2,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -14.
1-14=-13 2-7=-5
Calculate the sum for each pair.
a=-7 b=2
The solution is the pair that gives sum -5.
\left(y^{2}-7y\right)+\left(2y-14\right)
Rewrite y^{2}-5y-14 as \left(y^{2}-7y\right)+\left(2y-14\right).
y\left(y-7\right)+2\left(y-7\right)
Factor out y in the first and 2 in the second group.
\left(y-7\right)\left(y+2\right)
Factor out common term y-7 by using distributive property.
y^{2}-5y-14=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-14\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-5\right)±\sqrt{25-4\left(-14\right)}}{2}
Square -5.
y=\frac{-\left(-5\right)±\sqrt{25+56}}{2}
Multiply -4 times -14.
y=\frac{-\left(-5\right)±\sqrt{81}}{2}
Add 25 to 56.
y=\frac{-\left(-5\right)±9}{2}
Take the square root of 81.
y=\frac{5±9}{2}
The opposite of -5 is 5.
y=\frac{14}{2}
Now solve the equation y=\frac{5±9}{2} when ± is plus. Add 5 to 9.
y=7
Divide 14 by 2.
y=-\frac{4}{2}
Now solve the equation y=\frac{5±9}{2} when ± is minus. Subtract 9 from 5.
y=-2
Divide -4 by 2.
y^{2}-5y-14=\left(y-7\right)\left(y-\left(-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 7 for x_{1} and -2 for x_{2}.
y^{2}-5y-14=\left(y-7\right)\left(y+2\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}