Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}-32y+44=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 44}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-32\right)±\sqrt{1024-4\times 44}}{2}
Square -32.
y=\frac{-\left(-32\right)±\sqrt{1024-176}}{2}
Multiply -4 times 44.
y=\frac{-\left(-32\right)±\sqrt{848}}{2}
Add 1024 to -176.
y=\frac{-\left(-32\right)±4\sqrt{53}}{2}
Take the square root of 848.
y=\frac{32±4\sqrt{53}}{2}
The opposite of -32 is 32.
y=\frac{4\sqrt{53}+32}{2}
Now solve the equation y=\frac{32±4\sqrt{53}}{2} when ± is plus. Add 32 to 4\sqrt{53}.
y=2\sqrt{53}+16
Divide 32+4\sqrt{53} by 2.
y=\frac{32-4\sqrt{53}}{2}
Now solve the equation y=\frac{32±4\sqrt{53}}{2} when ± is minus. Subtract 4\sqrt{53} from 32.
y=16-2\sqrt{53}
Divide 32-4\sqrt{53} by 2.
y^{2}-32y+44=\left(y-\left(2\sqrt{53}+16\right)\right)\left(y-\left(16-2\sqrt{53}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 16+2\sqrt{53} for x_{1} and 16-2\sqrt{53} for x_{2}.