Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-2 ab=1\left(-24\right)=-24
Factor the expression by grouping. First, the expression needs to be rewritten as y^{2}+ay+by-24. To find a and b, set up a system to be solved.
1,-24 2,-12 3,-8 4,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -24.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
Calculate the sum for each pair.
a=-6 b=4
The solution is the pair that gives sum -2.
\left(y^{2}-6y\right)+\left(4y-24\right)
Rewrite y^{2}-2y-24 as \left(y^{2}-6y\right)+\left(4y-24\right).
y\left(y-6\right)+4\left(y-6\right)
Factor out y in the first and 4 in the second group.
\left(y-6\right)\left(y+4\right)
Factor out common term y-6 by using distributive property.
y^{2}-2y-24=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-24\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-2\right)±\sqrt{4-4\left(-24\right)}}{2}
Square -2.
y=\frac{-\left(-2\right)±\sqrt{4+96}}{2}
Multiply -4 times -24.
y=\frac{-\left(-2\right)±\sqrt{100}}{2}
Add 4 to 96.
y=\frac{-\left(-2\right)±10}{2}
Take the square root of 100.
y=\frac{2±10}{2}
The opposite of -2 is 2.
y=\frac{12}{2}
Now solve the equation y=\frac{2±10}{2} when ± is plus. Add 2 to 10.
y=6
Divide 12 by 2.
y=-\frac{8}{2}
Now solve the equation y=\frac{2±10}{2} when ± is minus. Subtract 10 from 2.
y=-4
Divide -8 by 2.
y^{2}-2y-24=\left(y-6\right)\left(y-\left(-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 6 for x_{1} and -4 for x_{2}.
y^{2}-2y-24=\left(y-6\right)\left(y+4\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.