Solve for y
y=10\sqrt{35}-60\approx -0.839202169
y=-10\sqrt{35}-60\approx -119.160797831
Graph
Share
Copied to clipboard
y^{2}+120y=-100
Combine -24y and 144y to get 120y.
y^{2}+120y+100=0
Add 100 to both sides.
y=\frac{-120±\sqrt{120^{2}-4\times 100}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 120 for b, and 100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-120±\sqrt{14400-4\times 100}}{2}
Square 120.
y=\frac{-120±\sqrt{14400-400}}{2}
Multiply -4 times 100.
y=\frac{-120±\sqrt{14000}}{2}
Add 14400 to -400.
y=\frac{-120±20\sqrt{35}}{2}
Take the square root of 14000.
y=\frac{20\sqrt{35}-120}{2}
Now solve the equation y=\frac{-120±20\sqrt{35}}{2} when ± is plus. Add -120 to 20\sqrt{35}.
y=10\sqrt{35}-60
Divide -120+20\sqrt{35} by 2.
y=\frac{-20\sqrt{35}-120}{2}
Now solve the equation y=\frac{-120±20\sqrt{35}}{2} when ± is minus. Subtract 20\sqrt{35} from -120.
y=-10\sqrt{35}-60
Divide -120-20\sqrt{35} by 2.
y=10\sqrt{35}-60 y=-10\sqrt{35}-60
The equation is now solved.
y^{2}+120y=-100
Combine -24y and 144y to get 120y.
y^{2}+120y+60^{2}=-100+60^{2}
Divide 120, the coefficient of the x term, by 2 to get 60. Then add the square of 60 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+120y+3600=-100+3600
Square 60.
y^{2}+120y+3600=3500
Add -100 to 3600.
\left(y+60\right)^{2}=3500
Factor y^{2}+120y+3600. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+60\right)^{2}}=\sqrt{3500}
Take the square root of both sides of the equation.
y+60=10\sqrt{35} y+60=-10\sqrt{35}
Simplify.
y=10\sqrt{35}-60 y=-10\sqrt{35}-60
Subtract 60 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}