Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}+120y=-100
Combine -24y and 144y to get 120y.
y^{2}+120y+100=0
Add 100 to both sides.
y=\frac{-120±\sqrt{120^{2}-4\times 100}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 120 for b, and 100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-120±\sqrt{14400-4\times 100}}{2}
Square 120.
y=\frac{-120±\sqrt{14400-400}}{2}
Multiply -4 times 100.
y=\frac{-120±\sqrt{14000}}{2}
Add 14400 to -400.
y=\frac{-120±20\sqrt{35}}{2}
Take the square root of 14000.
y=\frac{20\sqrt{35}-120}{2}
Now solve the equation y=\frac{-120±20\sqrt{35}}{2} when ± is plus. Add -120 to 20\sqrt{35}.
y=10\sqrt{35}-60
Divide -120+20\sqrt{35} by 2.
y=\frac{-20\sqrt{35}-120}{2}
Now solve the equation y=\frac{-120±20\sqrt{35}}{2} when ± is minus. Subtract 20\sqrt{35} from -120.
y=-10\sqrt{35}-60
Divide -120-20\sqrt{35} by 2.
y=10\sqrt{35}-60 y=-10\sqrt{35}-60
The equation is now solved.
y^{2}+120y=-100
Combine -24y and 144y to get 120y.
y^{2}+120y+60^{2}=-100+60^{2}
Divide 120, the coefficient of the x term, by 2 to get 60. Then add the square of 60 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+120y+3600=-100+3600
Square 60.
y^{2}+120y+3600=3500
Add -100 to 3600.
\left(y+60\right)^{2}=3500
Factor y^{2}+120y+3600. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+60\right)^{2}}=\sqrt{3500}
Take the square root of both sides of the equation.
y+60=10\sqrt{35} y+60=-10\sqrt{35}
Simplify.
y=10\sqrt{35}-60 y=-10\sqrt{35}-60
Subtract 60 from both sides of the equation.