Factor
\left(y+1\right)\left(y+7\right)
Evaluate
\left(y+1\right)\left(y+7\right)
Graph
Share
Copied to clipboard
a+b=8 ab=1\times 7=7
Factor the expression by grouping. First, the expression needs to be rewritten as y^{2}+ay+by+7. To find a and b, set up a system to be solved.
a=1 b=7
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(y^{2}+y\right)+\left(7y+7\right)
Rewrite y^{2}+8y+7 as \left(y^{2}+y\right)+\left(7y+7\right).
y\left(y+1\right)+7\left(y+1\right)
Factor out y in the first and 7 in the second group.
\left(y+1\right)\left(y+7\right)
Factor out common term y+1 by using distributive property.
y^{2}+8y+7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-8±\sqrt{8^{2}-4\times 7}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-8±\sqrt{64-4\times 7}}{2}
Square 8.
y=\frac{-8±\sqrt{64-28}}{2}
Multiply -4 times 7.
y=\frac{-8±\sqrt{36}}{2}
Add 64 to -28.
y=\frac{-8±6}{2}
Take the square root of 36.
y=-\frac{2}{2}
Now solve the equation y=\frac{-8±6}{2} when ± is plus. Add -8 to 6.
y=-1
Divide -2 by 2.
y=-\frac{14}{2}
Now solve the equation y=\frac{-8±6}{2} when ± is minus. Subtract 6 from -8.
y=-7
Divide -14 by 2.
y^{2}+8y+7=\left(y-\left(-1\right)\right)\left(y-\left(-7\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1 for x_{1} and -7 for x_{2}.
y^{2}+8y+7=\left(y+1\right)\left(y+7\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}