Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}+10y-400=0
Calculate y to the power of 1 and get y.
y=\frac{-10±\sqrt{10^{2}-4\left(-400\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 10 for b, and -400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-10±\sqrt{100-4\left(-400\right)}}{2}
Square 10.
y=\frac{-10±\sqrt{100+1600}}{2}
Multiply -4 times -400.
y=\frac{-10±\sqrt{1700}}{2}
Add 100 to 1600.
y=\frac{-10±10\sqrt{17}}{2}
Take the square root of 1700.
y=\frac{10\sqrt{17}-10}{2}
Now solve the equation y=\frac{-10±10\sqrt{17}}{2} when ± is plus. Add -10 to 10\sqrt{17}.
y=5\sqrt{17}-5
Divide -10+10\sqrt{17} by 2.
y=\frac{-10\sqrt{17}-10}{2}
Now solve the equation y=\frac{-10±10\sqrt{17}}{2} when ± is minus. Subtract 10\sqrt{17} from -10.
y=-5\sqrt{17}-5
Divide -10-10\sqrt{17} by 2.
y=5\sqrt{17}-5 y=-5\sqrt{17}-5
The equation is now solved.
y^{2}+10y-400=0
Calculate y to the power of 1 and get y.
y^{2}+10y=400
Add 400 to both sides. Anything plus zero gives itself.
y^{2}+10y+5^{2}=400+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+10y+25=400+25
Square 5.
y^{2}+10y+25=425
Add 400 to 25.
\left(y+5\right)^{2}=425
Factor y^{2}+10y+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+5\right)^{2}}=\sqrt{425}
Take the square root of both sides of the equation.
y+5=5\sqrt{17} y+5=-5\sqrt{17}
Simplify.
y=5\sqrt{17}-5 y=-5\sqrt{17}-5
Subtract 5 from both sides of the equation.