Solve for x
x=8-\frac{3}{y}
y\neq 0
Solve for y
y=-\frac{3}{x-8}
x\neq 8
Graph
Share
Copied to clipboard
3y^{-1}=-x+8
Multiply both sides of the equation by 3.
-x+8=3y^{-1}
Swap sides so that all variable terms are on the left hand side.
-x=3y^{-1}-8
Subtract 8 from both sides.
-x=-8+3\times \frac{1}{y}
Reorder the terms.
-xy=y\left(-8\right)+3\times 1
Multiply both sides of the equation by y.
-xy=y\left(-8\right)+3
Multiply 3 and 1 to get 3.
\left(-y\right)x=3-8y
The equation is in standard form.
\frac{\left(-y\right)x}{-y}=\frac{3-8y}{-y}
Divide both sides by -y.
x=\frac{3-8y}{-y}
Dividing by -y undoes the multiplication by -y.
x=8-\frac{3}{y}
Divide -8y+3 by -y.
3y^{-1}=-x+8
Multiply both sides of the equation by 3.
3\times \frac{1}{y}=8-x
Reorder the terms.
3\times 1=y\times 8-xy
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
3=y\times 8-xy
Multiply 3 and 1 to get 3.
y\times 8-xy=3
Swap sides so that all variable terms are on the left hand side.
\left(8-x\right)y=3
Combine all terms containing y.
\frac{\left(8-x\right)y}{8-x}=\frac{3}{8-x}
Divide both sides by 8-x.
y=\frac{3}{8-x}
Dividing by 8-x undoes the multiplication by 8-x.
y=\frac{3}{8-x}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}