Factor
\left(x-2\right)\left(x+2\right)x^{2}\left(x^{2}-3\right)\left(x^{2}+3\right)
Evaluate
x^{2}\left(x^{6}-4x^{4}-9x^{2}+36\right)
Graph
Share
Copied to clipboard
x^{2}\left(x^{6}-4x^{4}-9x^{2}+36\right)
Factor out x^{2}.
x^{4}\left(x^{2}-4\right)-9\left(x^{2}-4\right)
Consider x^{6}-4x^{4}-9x^{2}+36. Do the grouping x^{6}-4x^{4}-9x^{2}+36=\left(x^{6}-4x^{4}\right)+\left(-9x^{2}+36\right), and factor out x^{4} in the first and -9 in the second group.
\left(x^{2}-4\right)\left(x^{4}-9\right)
Factor out common term x^{2}-4 by using distributive property.
\left(x-2\right)\left(x+2\right)
Consider x^{2}-4. Rewrite x^{2}-4 as x^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{2}-3\right)\left(x^{2}+3\right)
Consider x^{4}-9. Rewrite x^{4}-9 as \left(x^{2}\right)^{2}-3^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x^{2}\left(x-2\right)\left(x+2\right)\left(x^{2}-3\right)\left(x^{2}+3\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: x^{2}-3,x^{2}+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}