Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

t^{2}-15t-16=0
Substitute t for x^{4}.
t=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 1\left(-16\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -15 for b, and -16 for c in the quadratic formula.
t=\frac{15±17}{2}
Do the calculations.
t=16 t=-1
Solve the equation t=\frac{15±17}{2} when ± is plus and when ± is minus.
x=-2 x=-2i x=2i x=2 x=\sqrt{2}\left(-\frac{1}{2}-\frac{1}{2}i\right) x=\sqrt{2}\left(\frac{1}{2}+\frac{1}{2}i\right) x=\sqrt{2}\left(-\frac{1}{2}+\frac{1}{2}i\right) x=\sqrt{2}\left(\frac{1}{2}-\frac{1}{2}i\right)
Since x=t^{4}, the solutions are obtained by solving the equation for each t.
t^{2}-15t-16=0
Substitute t for x^{4}.
t=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 1\left(-16\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -15 for b, and -16 for c in the quadratic formula.
t=\frac{15±17}{2}
Do the calculations.
t=16 t=-1
Solve the equation t=\frac{15±17}{2} when ± is plus and when ± is minus.
x=2 x=-2
Since x=t^{4}, the solutions are obtained by evaluating x=±\sqrt[4]{t} for positive t.