Skip to main content
Solve for y (complex solution)
Tick mark Image
Solve for y
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

x^{4}-3x+2=x^{4}+zx^{3}+yx^{2}-2x-x^{3}-zx^{2}-yx+2
Use the distributive property to multiply x-1 by x^{3}+zx^{2}+yx-2.
x^{4}+zx^{3}+yx^{2}-2x-x^{3}-zx^{2}-yx+2=x^{4}-3x+2
Swap sides so that all variable terms are on the left hand side.
zx^{3}+yx^{2}-2x-x^{3}-zx^{2}-yx+2=x^{4}-3x+2-x^{4}
Subtract x^{4} from both sides.
zx^{3}+yx^{2}-2x-x^{3}-zx^{2}-yx+2=-3x+2
Combine x^{4} and -x^{4} to get 0.
yx^{2}-2x-x^{3}-zx^{2}-yx+2=-3x+2-zx^{3}
Subtract zx^{3} from both sides.
yx^{2}-x^{3}-zx^{2}-yx+2=-3x+2-zx^{3}+2x
Add 2x to both sides.
yx^{2}-zx^{2}-yx+2=-3x+2-zx^{3}+2x+x^{3}
Add x^{3} to both sides.
yx^{2}-yx+2=-3x+2-zx^{3}+2x+x^{3}+zx^{2}
Add zx^{2} to both sides.
yx^{2}-yx=-3x+2-zx^{3}+2x+x^{3}+zx^{2}-2
Subtract 2 from both sides.
yx^{2}-yx=-x+2-zx^{3}+x^{3}+zx^{2}-2
Combine -3x and 2x to get -x.
yx^{2}-yx=-x-zx^{3}+x^{3}+zx^{2}
Subtract 2 from 2 to get 0.
\left(x^{2}-x\right)y=-x-zx^{3}+x^{3}+zx^{2}
Combine all terms containing y.
\left(x^{2}-x\right)y=x^{3}-x-zx^{3}+zx^{2}
The equation is in standard form.
\frac{\left(x^{2}-x\right)y}{x^{2}-x}=\frac{x\left(1-x\right)\left(xz-x-1\right)}{x^{2}-x}
Divide both sides by x^{2}-x.
y=\frac{x\left(1-x\right)\left(xz-x-1\right)}{x^{2}-x}
Dividing by x^{2}-x undoes the multiplication by x^{2}-x.
y=1+x-xz
Divide x\left(-1-x+zx\right)\left(1-x\right) by x^{2}-x.
x^{4}-3x+2=x^{4}+zx^{3}+yx^{2}-2x-x^{3}-zx^{2}-yx+2
Use the distributive property to multiply x-1 by x^{3}+zx^{2}+yx-2.
x^{4}+zx^{3}+yx^{2}-2x-x^{3}-zx^{2}-yx+2=x^{4}-3x+2
Swap sides so that all variable terms are on the left hand side.
zx^{3}+yx^{2}-2x-x^{3}-zx^{2}-yx+2=x^{4}-3x+2-x^{4}
Subtract x^{4} from both sides.
zx^{3}+yx^{2}-2x-x^{3}-zx^{2}-yx+2=-3x+2
Combine x^{4} and -x^{4} to get 0.
yx^{2}-2x-x^{3}-zx^{2}-yx+2=-3x+2-zx^{3}
Subtract zx^{3} from both sides.
yx^{2}-x^{3}-zx^{2}-yx+2=-3x+2-zx^{3}+2x
Add 2x to both sides.
yx^{2}-zx^{2}-yx+2=-3x+2-zx^{3}+2x+x^{3}
Add x^{3} to both sides.
yx^{2}-yx+2=-3x+2-zx^{3}+2x+x^{3}+zx^{2}
Add zx^{2} to both sides.
yx^{2}-yx=-3x+2-zx^{3}+2x+x^{3}+zx^{2}-2
Subtract 2 from both sides.
yx^{2}-yx=-x+2-zx^{3}+x^{3}+zx^{2}-2
Combine -3x and 2x to get -x.
yx^{2}-yx=-x-zx^{3}+x^{3}+zx^{2}
Subtract 2 from 2 to get 0.
\left(x^{2}-x\right)y=-x-zx^{3}+x^{3}+zx^{2}
Combine all terms containing y.
\left(x^{2}-x\right)y=x^{3}-x-zx^{3}+zx^{2}
The equation is in standard form.
\frac{\left(x^{2}-x\right)y}{x^{2}-x}=\frac{x\left(1-x\right)\left(xz-x-1\right)}{x^{2}-x}
Divide both sides by x^{2}-x.
y=\frac{x\left(1-x\right)\left(xz-x-1\right)}{x^{2}-x}
Dividing by x^{2}-x undoes the multiplication by x^{2}-x.
y=1+x-xz
Divide x\left(-1-x+zx\right)\left(1-x\right) by x^{2}-x.