Solve for y (complex solution)
\left\{\begin{matrix}\\y=1+x-xz\text{, }&\text{unconditionally}\\y\in \mathrm{C}\text{, }&x=1\text{ or }x=0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=1+x-xz\text{, }&x\neq 1\\y\in \mathrm{R}\text{, }&x=1\text{ or }x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=1\text{; }x=0\text{, }&\text{unconditionally}\\x=-\frac{1-y}{1-z}\text{, }&z\neq 1\\x\in \mathrm{C}\text{, }&y=1\text{ and }z=1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=1\text{; }x=0\text{, }&\text{unconditionally}\\x=-\frac{1-y}{1-z}\text{, }&z\neq 1\\x\in \mathrm{R}\text{, }&y=1\text{ and }z=1\end{matrix}\right.
Share
Copied to clipboard
x^{4}-3x+2=x^{4}+zx^{3}+yx^{2}-2x-x^{3}-zx^{2}-yx+2
Use the distributive property to multiply x-1 by x^{3}+zx^{2}+yx-2.
x^{4}+zx^{3}+yx^{2}-2x-x^{3}-zx^{2}-yx+2=x^{4}-3x+2
Swap sides so that all variable terms are on the left hand side.
zx^{3}+yx^{2}-2x-x^{3}-zx^{2}-yx+2=x^{4}-3x+2-x^{4}
Subtract x^{4} from both sides.
zx^{3}+yx^{2}-2x-x^{3}-zx^{2}-yx+2=-3x+2
Combine x^{4} and -x^{4} to get 0.
yx^{2}-2x-x^{3}-zx^{2}-yx+2=-3x+2-zx^{3}
Subtract zx^{3} from both sides.
yx^{2}-x^{3}-zx^{2}-yx+2=-3x+2-zx^{3}+2x
Add 2x to both sides.
yx^{2}-zx^{2}-yx+2=-3x+2-zx^{3}+2x+x^{3}
Add x^{3} to both sides.
yx^{2}-yx+2=-3x+2-zx^{3}+2x+x^{3}+zx^{2}
Add zx^{2} to both sides.
yx^{2}-yx=-3x+2-zx^{3}+2x+x^{3}+zx^{2}-2
Subtract 2 from both sides.
yx^{2}-yx=-x+2-zx^{3}+x^{3}+zx^{2}-2
Combine -3x and 2x to get -x.
yx^{2}-yx=-x-zx^{3}+x^{3}+zx^{2}
Subtract 2 from 2 to get 0.
\left(x^{2}-x\right)y=-x-zx^{3}+x^{3}+zx^{2}
Combine all terms containing y.
\left(x^{2}-x\right)y=x^{3}-x-zx^{3}+zx^{2}
The equation is in standard form.
\frac{\left(x^{2}-x\right)y}{x^{2}-x}=\frac{x\left(1-x\right)\left(xz-x-1\right)}{x^{2}-x}
Divide both sides by x^{2}-x.
y=\frac{x\left(1-x\right)\left(xz-x-1\right)}{x^{2}-x}
Dividing by x^{2}-x undoes the multiplication by x^{2}-x.
y=1+x-xz
Divide x\left(-1-x+zx\right)\left(1-x\right) by x^{2}-x.
x^{4}-3x+2=x^{4}+zx^{3}+yx^{2}-2x-x^{3}-zx^{2}-yx+2
Use the distributive property to multiply x-1 by x^{3}+zx^{2}+yx-2.
x^{4}+zx^{3}+yx^{2}-2x-x^{3}-zx^{2}-yx+2=x^{4}-3x+2
Swap sides so that all variable terms are on the left hand side.
zx^{3}+yx^{2}-2x-x^{3}-zx^{2}-yx+2=x^{4}-3x+2-x^{4}
Subtract x^{4} from both sides.
zx^{3}+yx^{2}-2x-x^{3}-zx^{2}-yx+2=-3x+2
Combine x^{4} and -x^{4} to get 0.
yx^{2}-2x-x^{3}-zx^{2}-yx+2=-3x+2-zx^{3}
Subtract zx^{3} from both sides.
yx^{2}-x^{3}-zx^{2}-yx+2=-3x+2-zx^{3}+2x
Add 2x to both sides.
yx^{2}-zx^{2}-yx+2=-3x+2-zx^{3}+2x+x^{3}
Add x^{3} to both sides.
yx^{2}-yx+2=-3x+2-zx^{3}+2x+x^{3}+zx^{2}
Add zx^{2} to both sides.
yx^{2}-yx=-3x+2-zx^{3}+2x+x^{3}+zx^{2}-2
Subtract 2 from both sides.
yx^{2}-yx=-x+2-zx^{3}+x^{3}+zx^{2}-2
Combine -3x and 2x to get -x.
yx^{2}-yx=-x-zx^{3}+x^{3}+zx^{2}
Subtract 2 from 2 to get 0.
\left(x^{2}-x\right)y=-x-zx^{3}+x^{3}+zx^{2}
Combine all terms containing y.
\left(x^{2}-x\right)y=x^{3}-x-zx^{3}+zx^{2}
The equation is in standard form.
\frac{\left(x^{2}-x\right)y}{x^{2}-x}=\frac{x\left(1-x\right)\left(xz-x-1\right)}{x^{2}-x}
Divide both sides by x^{2}-x.
y=\frac{x\left(1-x\right)\left(xz-x-1\right)}{x^{2}-x}
Dividing by x^{2}-x undoes the multiplication by x^{2}-x.
y=1+x-xz
Divide x\left(-1-x+zx\right)\left(1-x\right) by x^{2}-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}