Solve for x (complex solution)
x=\frac{5+i\sqrt{39}}{8}\approx 0.625+0.78062475i
x=\frac{-i\sqrt{39}+5}{8}\approx 0.625-0.78062475i
Graph
Share
Copied to clipboard
x^{4}-3.75x-1-x^{4}=-3x^{2}-4
Subtract x^{4} from both sides.
-3.75x-1=-3x^{2}-4
Combine x^{4} and -x^{4} to get 0.
-3.75x-1+3x^{2}=-4
Add 3x^{2} to both sides.
-3.75x-1+3x^{2}+4=0
Add 4 to both sides.
-3.75x+3+3x^{2}=0
Add -1 and 4 to get 3.
3x^{2}-3.75x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3.75\right)±\sqrt{\left(-3.75\right)^{2}-4\times 3\times 3}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -3.75 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3.75\right)±\sqrt{14.0625-4\times 3\times 3}}{2\times 3}
Square -3.75 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-3.75\right)±\sqrt{14.0625-12\times 3}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-3.75\right)±\sqrt{14.0625-36}}{2\times 3}
Multiply -12 times 3.
x=\frac{-\left(-3.75\right)±\sqrt{-21.9375}}{2\times 3}
Add 14.0625 to -36.
x=\frac{-\left(-3.75\right)±\frac{3\sqrt{39}i}{4}}{2\times 3}
Take the square root of -21.9375.
x=\frac{3.75±\frac{3\sqrt{39}i}{4}}{2\times 3}
The opposite of -3.75 is 3.75.
x=\frac{3.75±\frac{3\sqrt{39}i}{4}}{6}
Multiply 2 times 3.
x=\frac{15+3\sqrt{39}i}{4\times 6}
Now solve the equation x=\frac{3.75±\frac{3\sqrt{39}i}{4}}{6} when ± is plus. Add 3.75 to \frac{3i\sqrt{39}}{4}.
x=\frac{5+\sqrt{39}i}{8}
Divide \frac{15+3i\sqrt{39}}{4} by 6.
x=\frac{-3\sqrt{39}i+15}{4\times 6}
Now solve the equation x=\frac{3.75±\frac{3\sqrt{39}i}{4}}{6} when ± is minus. Subtract \frac{3i\sqrt{39}}{4} from 3.75.
x=\frac{-\sqrt{39}i+5}{8}
Divide \frac{15-3i\sqrt{39}}{4} by 6.
x=\frac{5+\sqrt{39}i}{8} x=\frac{-\sqrt{39}i+5}{8}
The equation is now solved.
x^{4}-3.75x-1-x^{4}=-3x^{2}-4
Subtract x^{4} from both sides.
-3.75x-1=-3x^{2}-4
Combine x^{4} and -x^{4} to get 0.
-3.75x-1+3x^{2}=-4
Add 3x^{2} to both sides.
-3.75x+3x^{2}=-4+1
Add 1 to both sides.
-3.75x+3x^{2}=-3
Add -4 and 1 to get -3.
3x^{2}-3.75x=-3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}-3.75x}{3}=-\frac{3}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{3.75}{3}\right)x=-\frac{3}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-1.25x=-\frac{3}{3}
Divide -3.75 by 3.
x^{2}-1.25x=-1
Divide -3 by 3.
x^{2}-1.25x+\left(-0.625\right)^{2}=-1+\left(-0.625\right)^{2}
Divide -1.25, the coefficient of the x term, by 2 to get -0.625. Then add the square of -0.625 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-1.25x+0.390625=-1+0.390625
Square -0.625 by squaring both the numerator and the denominator of the fraction.
x^{2}-1.25x+0.390625=-0.609375
Add -1 to 0.390625.
\left(x-0.625\right)^{2}=-0.609375
Factor x^{2}-1.25x+0.390625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.625\right)^{2}}=\sqrt{-0.609375}
Take the square root of both sides of the equation.
x-0.625=\frac{\sqrt{39}i}{8} x-0.625=-\frac{\sqrt{39}i}{8}
Simplify.
x=\frac{5+\sqrt{39}i}{8} x=\frac{-\sqrt{39}i+5}{8}
Add 0.625 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}