Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

t^{2}-20t-19=0
Substitute t for x^{2}.
t=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 1\left(-19\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -20 for b, and -19 for c in the quadratic formula.
t=\frac{20±2\sqrt{119}}{2}
Do the calculations.
t=\sqrt{119}+10 t=10-\sqrt{119}
Solve the equation t=\frac{20±2\sqrt{119}}{2} when ± is plus and when ± is minus.
x=-\sqrt{\sqrt{119}+10} x=\sqrt{\sqrt{119}+10} x=-i\sqrt{-\left(10-\sqrt{119}\right)} x=i\sqrt{-\left(10-\sqrt{119}\right)}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
t^{2}-20t-19=0
Substitute t for x^{2}.
t=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 1\left(-19\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -20 for b, and -19 for c in the quadratic formula.
t=\frac{20±2\sqrt{119}}{2}
Do the calculations.
t=\sqrt{119}+10 t=10-\sqrt{119}
Solve the equation t=\frac{20±2\sqrt{119}}{2} when ± is plus and when ± is minus.
x=\sqrt{\sqrt{119}+10} x=-\sqrt{\sqrt{119}+10}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.