Solve for x (complex solution)
x=\sqrt{3}\approx 1.732050808
x=-\sqrt{3}\approx -1.732050808
x=-i
x=i
Solve for x
x=-\sqrt{3}\approx -1.732050808
x=\sqrt{3}\approx 1.732050808
Graph
Share
Copied to clipboard
x^{4}-2x^{2}-3=0
Subtract 3 from both sides.
t^{2}-2t-3=0
Substitute t for x^{2}.
t=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\left(-3\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -2 for b, and -3 for c in the quadratic formula.
t=\frac{2±4}{2}
Do the calculations.
t=3 t=-1
Solve the equation t=\frac{2±4}{2} when ± is plus and when ± is minus.
x=-\sqrt{3} x=\sqrt{3} x=-i x=i
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
x^{4}-2x^{2}-3=0
Subtract 3 from both sides.
t^{2}-2t-3=0
Substitute t for x^{2}.
t=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\left(-3\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -2 for b, and -3 for c in the quadratic formula.
t=\frac{2±4}{2}
Do the calculations.
t=3 t=-1
Solve the equation t=\frac{2±4}{2} when ± is plus and when ± is minus.
x=\sqrt{3} x=-\sqrt{3}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}