Solve for x (complex solution)
x\in -\left(\sqrt{5}+2\right),-\sqrt{5}i-2i,\sqrt{5}i+2i,\sqrt{5}+2,-\sqrt{5}i+2i,2-\sqrt{5},\sqrt{5}i-2i,\sqrt{5}-2
Solve for x
x=-\left(\sqrt{5}+2\right)\approx -4.236067977
x=\sqrt{5}+2\approx 4.236067977
x=\sqrt{5}-2\approx 0.236067977
x=2-\sqrt{5}\approx -0.236067977
Graph
Share
Copied to clipboard
x^{4}x^{4}+1=322x^{4}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{4}.
x^{8}+1=322x^{4}
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
x^{8}+1-322x^{4}=0
Subtract 322x^{4} from both sides.
t^{2}-322t+1=0
Substitute t for x^{4}.
t=\frac{-\left(-322\right)±\sqrt{\left(-322\right)^{2}-4\times 1\times 1}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -322 for b, and 1 for c in the quadratic formula.
t=\frac{322±144\sqrt{5}}{2}
Do the calculations.
t=72\sqrt{5}+161 t=161-72\sqrt{5}
Solve the equation t=\frac{322±144\sqrt{5}}{2} when ± is plus and when ± is minus.
x=-\left(\sqrt{5}i+2i\right) x=-\left(\sqrt{5}+2\right) x=\sqrt{5}i+2i x=\sqrt{5}+2 x=-\sqrt{5}i+2i x=2-\sqrt{5} x=-\left(-\sqrt{5}i+2i\right) x=-\left(2-\sqrt{5}\right)
Since x=t^{4}, the solutions are obtained by solving the equation for each t.
x^{4}x^{4}+1=322x^{4}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{4}.
x^{8}+1=322x^{4}
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
x^{8}+1-322x^{4}=0
Subtract 322x^{4} from both sides.
t^{2}-322t+1=0
Substitute t for x^{4}.
t=\frac{-\left(-322\right)±\sqrt{\left(-322\right)^{2}-4\times 1\times 1}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -322 for b, and 1 for c in the quadratic formula.
t=\frac{322±144\sqrt{5}}{2}
Do the calculations.
t=72\sqrt{5}+161 t=161-72\sqrt{5}
Solve the equation t=\frac{322±144\sqrt{5}}{2} when ± is plus and when ± is minus.
x=\sqrt{5}+2 x=-\left(\sqrt{5}+2\right) x=-\left(2-\sqrt{5}\right) x=2-\sqrt{5}
Since x=t^{4}, the solutions are obtained by evaluating x=±\sqrt[4]{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}