Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{4}x^{4}+1=x^{4}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{4}.
x^{8}+1=x^{4}
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
x^{8}+1-x^{4}=0
Subtract x^{4} from both sides.
t^{2}-t+1=0
Substitute t for x^{4}.
t=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 1}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -1 for b, and 1 for c in the quadratic formula.
t=\frac{1±\sqrt{-3}}{2}
Do the calculations.
t=\frac{1+\sqrt{3}i}{2} t=\frac{-\sqrt{3}i+1}{2}
Solve the equation t=\frac{1±\sqrt{-3}}{2} when ± is plus and when ± is minus.
x=-ie^{\frac{\pi i}{12}} x=-e^{\frac{\pi i}{12}} x=ie^{\frac{\pi i}{12}} x=e^{\frac{\pi i}{12}} x=-ie^{\frac{5\pi i}{12}} x=-e^{\frac{5\pi i}{12}} x=ie^{\frac{5\pi i}{12}} x=e^{\frac{5\pi i}{12}}
Since x=t^{4}, the solutions are obtained by solving the equation for each t.
x=e^{\frac{5\pi i}{12}}\text{, }x\neq 0 x=ie^{\frac{5\pi i}{12}}\text{, }x\neq 0 x=-e^{\frac{5\pi i}{12}}\text{, }x\neq 0 x=-ie^{\frac{5\pi i}{12}}\text{, }x\neq 0 x=e^{\frac{\pi i}{12}}\text{, }x\neq 0 x=ie^{\frac{\pi i}{12}}\text{, }x\neq 0 x=-e^{\frac{\pi i}{12}}\text{, }x\neq 0 x=-ie^{\frac{\pi i}{12}}\text{, }x\neq 0
Variable x cannot be equal to 0.