Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{3}-\left(x^{3}-6x^{2}+12x-8\right)=256
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-2\right)^{3}.
x^{3}-x^{3}+6x^{2}-12x+8=256
To find the opposite of x^{3}-6x^{2}+12x-8, find the opposite of each term.
6x^{2}-12x+8=256
Combine x^{3} and -x^{3} to get 0.
6x^{2}-12x+8-256=0
Subtract 256 from both sides.
6x^{2}-12x-248=0
Subtract 256 from 8 to get -248.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 6\left(-248\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -12 for b, and -248 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 6\left(-248\right)}}{2\times 6}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-24\left(-248\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-12\right)±\sqrt{144+5952}}{2\times 6}
Multiply -24 times -248.
x=\frac{-\left(-12\right)±\sqrt{6096}}{2\times 6}
Add 144 to 5952.
x=\frac{-\left(-12\right)±4\sqrt{381}}{2\times 6}
Take the square root of 6096.
x=\frac{12±4\sqrt{381}}{2\times 6}
The opposite of -12 is 12.
x=\frac{12±4\sqrt{381}}{12}
Multiply 2 times 6.
x=\frac{4\sqrt{381}+12}{12}
Now solve the equation x=\frac{12±4\sqrt{381}}{12} when ± is plus. Add 12 to 4\sqrt{381}.
x=\frac{\sqrt{381}}{3}+1
Divide 12+4\sqrt{381} by 12.
x=\frac{12-4\sqrt{381}}{12}
Now solve the equation x=\frac{12±4\sqrt{381}}{12} when ± is minus. Subtract 4\sqrt{381} from 12.
x=-\frac{\sqrt{381}}{3}+1
Divide 12-4\sqrt{381} by 12.
x=\frac{\sqrt{381}}{3}+1 x=-\frac{\sqrt{381}}{3}+1
The equation is now solved.
x^{3}-\left(x^{3}-6x^{2}+12x-8\right)=256
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-2\right)^{3}.
x^{3}-x^{3}+6x^{2}-12x+8=256
To find the opposite of x^{3}-6x^{2}+12x-8, find the opposite of each term.
6x^{2}-12x+8=256
Combine x^{3} and -x^{3} to get 0.
6x^{2}-12x=256-8
Subtract 8 from both sides.
6x^{2}-12x=248
Subtract 8 from 256 to get 248.
\frac{6x^{2}-12x}{6}=\frac{248}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{12}{6}\right)x=\frac{248}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-2x=\frac{248}{6}
Divide -12 by 6.
x^{2}-2x=\frac{124}{3}
Reduce the fraction \frac{248}{6} to lowest terms by extracting and canceling out 2.
x^{2}-2x+1=\frac{124}{3}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{127}{3}
Add \frac{124}{3} to 1.
\left(x-1\right)^{2}=\frac{127}{3}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{127}{3}}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{381}}{3} x-1=-\frac{\sqrt{381}}{3}
Simplify.
x=\frac{\sqrt{381}}{3}+1 x=-\frac{\sqrt{381}}{3}+1
Add 1 to both sides of the equation.