Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{3}x^{3}+1=3x^{3}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{3}.
x^{6}+1=3x^{3}
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
x^{6}+1-3x^{3}=0
Subtract 3x^{3} from both sides.
t^{2}-3t+1=0
Substitute t for x^{3}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 1}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -3 for b, and 1 for c in the quadratic formula.
t=\frac{3±\sqrt{5}}{2}
Do the calculations.
t=\frac{\sqrt{5}+3}{2} t=\frac{3-\sqrt{5}}{2}
Solve the equation t=\frac{3±\sqrt{5}}{2} when ± is plus and when ± is minus.
x=-\sqrt[3]{\frac{\sqrt{5}+3}{2}}e^{\frac{\pi i}{3}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}}ie^{\frac{\pi i}{6}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=-\sqrt[3]{\frac{3-\sqrt{5}}{2}}e^{\frac{\pi i}{3}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}ie^{\frac{\pi i}{6}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}
Since x=t^{3}, the solutions are obtained by solving the equation for each t.
x=\sqrt[3]{\frac{3-\sqrt{5}}{2}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}ie^{\frac{\pi i}{6}}\text{, }x\neq 0 x=-\sqrt[3]{\frac{3-\sqrt{5}}{2}}e^{\frac{\pi i}{3}}\text{, }x\neq 0 x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}}ie^{\frac{\pi i}{6}}\text{, }x\neq 0 x=-\sqrt[3]{\frac{\sqrt{5}+3}{2}}e^{\frac{\pi i}{3}}\text{, }x\neq 0
Variable x cannot be equal to 0.
x^{3}x^{3}+1=3x^{3}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{3}.
x^{6}+1=3x^{3}
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
x^{6}+1-3x^{3}=0
Subtract 3x^{3} from both sides.
t^{2}-3t+1=0
Substitute t for x^{3}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 1}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -3 for b, and 1 for c in the quadratic formula.
t=\frac{3±\sqrt{5}}{2}
Do the calculations.
t=\frac{\sqrt{5}+3}{2} t=\frac{3-\sqrt{5}}{2}
Solve the equation t=\frac{3±\sqrt{5}}{2} when ± is plus and when ± is minus.
x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}
Since x=t^{3}, the solutions are obtained by evaluating x=\sqrt[3]{t} for each t.